Learn R Programming

BSGS (version 2.0)

CompWiseGibbsSimple: Generate the posterior samples from the posterior distribution using the component-wise Gibbs sampler (CWGS).

Description

Generate the posterior samples using MCMC procedures.

Usage

CompWiseGibbsSimple(Y, X, beta.value, r, tau2, rho, sigma2, nu, lambda, num.of.inner.iter, num.of.iteration, MCSE.Sigma2.Given)

Arguments

Y
vector of observations of length $n$.
X
design matrix of dimension $n \times p$.
beta.value
Initial values of regression coefficients, $\beta$.
r
Initial values of indicator variables for individual regressors.
tau2
Variance in the prior distribution for regression coefficients.
rho
Prior probability including a variable.
sigma2
Initial value of $\sigma^2$.
nu
The hyperparameter in the prior distribution of $\sigma^2$.
lambda
The hyperparameter in the prior distribution of $\sigma^2$.
num.of.inner.iter
The number of iterations before sampling $\sigma^2$.
num.of.iteration
The number of iterations to be runned for sparse group variable selection.
MCSE.Sigma2.Given
Prespecified value which is used to stop simulating samples when the MCSE of estimate of $\sigma^2$ less then given values.

Value

$\beta$, variance $\sigma^2$, binary variables, $\gamma$, the number of iterations performed, and the time in second required for the run.

Examples

Run this code


## Not run: 
# CompWiseGibbsSimple(Y, X, beta.value, r, tau2, rho, sigma2, nu, lambda,
#  num.of.inner.iter.default, num.of.iteration, MCSE.Sigma2.Given)## End(Not run)

Run the code above in your browser using DataLab