Rdocumentation
powered by
Learn R Programming
BSGS (version 2.0)
Bayesian Sparse Group Selection
Description
The integration of Bayesian variable and sparse group variable selection approaches for regression models.
Copy Link
Link to current version
Version
Version
2.0
1.0
Install
install.packages('BSGS')
Monthly Downloads
14
Version
2.0
License
GPL-2
Maintainer
KuoJung Lee
Last Published
June 23rd, 2015
Functions in BSGS (2.0)
Search all functions
TCR.TPR.FPR.BSGS
Evaluate TCR, TPR and FPR for sparse group variable selection problmes.
CompWiseGibbsSMP
Stochastic matching pursuit for variable selection.
TCR.TPR.FPR.CGS.SMP
Evaluate TCR, TPR and FPR for variable selection problems.
MSE.BSGS
Mean square error (MSE).
BSGS.PE
Posterior estimates of parameters.
Crisis2008BalancedData
A cross-sectional data set from Rose and Spiegel with the removal of missing values.
BSGS.Sample
Sample version of group-wise Gibbs sampler for sparse group selection.
BSGS.Simple
The group-wise Gibbs sampler for sparse group selection.
Crisis2008
A cross-sectional data set from Rose and Spiegel.
MSE.CGS.SMP
Mean square error (MSE).
CompWiseGibbsSimple
Generate the posterior samples from the posterior distribution using the component-wise Gibbs sampler (CWGS).
CGS.SMP.PE
Posterior estimates of parameters.