Learn R Programming

BSGS (version 2.0)

TCR.TPR.FPR.CGS.SMP: Evaluate TCR, TPR and FPR for variable selection problems.

Description

Calculate the true classification rate (TCR), the true positive rate (TPR), and the false positive rate (FPR).

Usage

TCR.TPR.FPR.CGS.SMP(Output, True.r, Critical.Point)

Arguments

Output
A list of random samples for parameters.
True.r
The true value of indicator variable.
Critical.Point
When the posterior estiamte of $r=1$ greater than this critical point, then it would be assign to 1, and otherwise 0.

Value

Examples

Run this code
## Not run: 
# output = BSGS.Simple.SaveAllSimulatedSamples(Y, X, Group.Index, r.value, eta.value, 
# 	     beta.value, tau2.value, rho.value, theta.value, sigma2.value, nu, lambda, 
# 	     Num.of.Iter.Inside.CompWise, Num.Of.Iteration, MCSE.Sigma2.Given)
# TCR.TPR.FPR.BSGS(output, r.true, critical.value)
# ## End(Not run)

Run the code above in your browser using DataLab