Learn R Programming

⚠️There's a newer version (5.0.7) of this package.Take me there.

Bayesian Exponential Random Graph Models

Bergm provides a comprehensive framework for Bayesian parameter estimation and model selection for exponential random graph models using advanged computational algorithms. It can also supply graphical Bayesian goodness-of-fit procedures that address the issue of model adequacy and missing data imputation.

How to cite Bergm

Alberto Caimo, Nial Friel (2014). Bergm: Bayesian Exponential Random Graphs in R. Journal of Statistical Software, 61(2), 1-25. URL http://www.jstatsoft.org/v61/i02/.

Copy Link

Version

Install

install.packages('Bergm')

Monthly Downloads

1,245

Version

4.2.0

License

GPL (>= 2)

Maintainer

Alberto Caimo

Last Published

September 25th, 2018

Functions in Bergm (4.2.0)

Bergm-package

Bayesian exponential random graph models
evidence_PP

Evidence estimation via power posteriors
adjustPL

Adjustment of pseudolikelihood function
bergm

Parameter estimation for Bayesian ERGMs
missBergm

Parameter estimation for Bayesian ERGMs under missing data
evidence_CJ

Evidence estimation via Chib and Jeliazkov's method
bergm.output

Summarising posterior BERGM output
bgof

Bayesian goodness-of-fit diagnostics for ERGMs
calibrate.bergm

Calibrating misspecified Bayesian ERGMs