#############################################################################
# EXAMPLE 1: Several models for sim.dina data
#############################################################################
data(sim.dina)
data(sim.qmatrix)
#--- Model 1: GDINA model
mod1 <- gdina( data = sim.dina , q.matrix = sim.qmatrix)
summary(mod1)
dmod1 <- IRT.data(mod1)
str(dmod1)
#--- Model 2: DINA model
mod2 <- din( data = sim.dina , q.matrix = sim.qmatrix)
summary(mod2)
dmod2 <- IRT.data(mod2)
#--- Model 3: Rasch model with gdm function
mod3 <- gdm( data = sim.dina , irtmodel="1PL" , theta.k=seq(-4,4,length=11) ,
centered.latent=TRUE )
summary(mod3)
dmod3 <- IRT.data(mod3)
#--- Model 4: Latent class model with two classes
dat <- sim.dina
I <- ncol(dat)
# define design matrices
TP <- 2 # two classes
# The idea is that latent classes refer to two different "dimensions".
# Items load on latent class indicators 1 and 2, see below.
Xdes <- array(0 , dim=c(I,2,2,2*I) )
items <- colnames(dat)
dimnames(Xdes)[[4]] <- c(paste0( colnames(dat) , "Class" , 1),
paste0( colnames(dat) , "Class" , 2) )
# items, categories , classes , parameters
# probabilities for correct solution
for (ii in 1:I){
Xdes[ ii , 2 , 1 , ii ] <- 1 # probabilities class 1
Xdes[ ii , 2 , 2 , ii+I ] <- 1 # probabilities class 2
}
# estimate model
mod4 <- slca( dat , Xdes=Xdes , maxiter=30 )
summary(mod4)
dmod4 <- IRT.data(mod4)
Run the code above in your browser using DataLab