Learn R Programming

CDM (version 4.991-1)

IRT.repDesign: Generation of a Replicate Design for IRT.jackknife

Description

This function generates a Jackknife replicate design which is necessary to use the IRT.jackknife function. The function is a wrapper to BIFIE.data.jack in the BIFIEsurvey package.

Usage

IRT.repDesign(data, wgt = NULL, jktype = "JK_TIMSS", jkzone = NULL, jkrep = NULL, jkfac = NULL, fayfac = 1, wgtrep = "W_FSTR", ngr = 100, Nboot=200, seed = .Random.seed)

Arguments

data
Dataset which must contain weights and item responses
wgt
Vector with sample weights
jktype
Type of jackknife procedure for creating the BIFIE.data object. jktype="JK_TIMSS" refers to TIMSS/PIRLS datasets. The type "JK_GROUP" creates jackknife weights based on a user defined grouping, the type "JK_RANDOM" creates random groups. The number of random groups can be defined in ngr. The argument type="RW_PISA" extracts the replicated design with balanced repeated replicate weights from PISA datasets into objects of class IRT.repDesign. Bootstrap samples can be obtained by type="BOOT".
jkzone
Variable name for jackknife zones. If jktype="JK_TIMSS", then jkzone="JKZONE". However, this default can be overwritten.
jkrep
Variable name containing Jackknife replicates
jkfac
Factor for multiplying jackknife replicate weights. If jktype="JK_TIMSS", then jkfac=2.
fayfac
Fay factor. For Jackknife, the default is 1. For a Bootstrap with $R$ samples with replacement, the Fay factor is $1/R$.
wgtrep
Already available replicate design
ngr
Number of groups
Nboot
Number of bootstrap samples
seed
Random seed

Value

A list with following entries
wgt
Vector with weights
wgtrep
Matrix containing the replicate design
fayfac
Fay factor needed for Jackknife calculations

See Also

See IRT.jackknife for further examples. See the BIFIE.data.jack function in the BIFIEsurvey package.

Examples

Run this code
## Not run: 	
# # load the BIFIEsurvey package	
# library(BIFIEsurvey)	
# 	
# #############################################################################
# # EXAMPLE 1: Design with Jackknife replicate weights in TIMSS
# #############################################################################
# 
# data(data.timss11.G4.AUT)
# dat <- data.timss11.G4.AUT$data
# # generate design
# rdes <- IRT.repDesign( data= dat,  wgt = "TOTWGT" , jktype="JK_TIMSS" , 
#              jkzone = "JKCZONE" , jkrep = "JKCREP" )
# str(rdes)
# 
# #############################################################################
# # EXAMPLE 2: Bootstrap resampling
# #############################################################################
# 
# data(sim.qmatrix)
# q.matrix <- sim.qmatrix
# 
# # simulate data according to the DINA model
# dat <- sim.din(N=2000,q.matrix )$dat
# 
# # bootstrap with 300 random samples
# rdes <- IRT.repDesign(  data= dat  ,  jktype="BOOT" , Nboot=300 )
# 
# ## End(Not run)

Run the code above in your browser using DataLab