Learn R Programming

CFO (version 2.1.0)

print.cfo: Generate descriptive summary for objects returned by other functions

Description

Generate descriptive summary for objects returned by other functions.

Usage

# S3 method for cfo
print(x, ...)

Value

print() prints the objects returned by other functions.

Arguments

x

the object returned by other functions

...

ignored arguments

Author

Jialu Fang, Ninghao Zhang, Wenliang Wang, and Guosheng Yin

Details

print() prints the objects returned by other functions.

Examples

Run this code

## settings for 1dCFO
nsimu <- 5; ncohort <- 12; cohortsize <- 3; init.level <- 1
p.true <- c(0.02, 0.05, 0.20, 0.28, 0.34, 0.40, 0.44); target <- 0.2
assess.window <- 3; accrual.rate <- 2; tte.para <- 0.5; accrual.dist <- 'unif'

## summarize the object returned by CFO.next()
decision <- CFO.next(target = 0.2, cys = c(0, 1, 0), cns = c(3, 6, 0), currdose = 3)
print(decision)

## summarize the object returned by lateonset.next()
enter.times<- c(0, 0.266, 0.638, 1.54, 2.48, 3.14, 3.32, 4.01, 4.39, 5.38, 5.76,
               6.54, 6.66, 6.93, 7.32, 7.65, 8.14, 8.74)
dlt.times<- c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0.995, 0, 0, 0, 0, 0, 0, 0, 2.58)
current.t<- 9.41; ndose = 7
doses<-c(1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 3, 3, 3, 4, 4, 4)
decision <- lateonset.next(design = 'f-aCFO', target, ndose, currdose = 4, assess.window,   
               enter.times, dlt.times, current.t, doses)
print(decision)

## summarize the object returned by CFO.selectmtd()
selmtd <- CFO.selectmtd(target=0.2, npts=c(3,3,27,3,0,0,0), ntox=c(0,0,4,2,0,0,0))
print(selmtd)

## summarize the object returned by CFO.simu()
aCFOtrial <- CFO.simu(design = 'aCFO', target, p.true, init.level, ncohort, cohortsize, seed = 1)
print(aCFOtrial)


# \donttest{
# This test may take longer than 5 seconds to run
# It is provided for illustration purposes only
# Users can run this code directly

## summarize the object returned by lateonset.simu()
faCFOtrial <- lateonset.simu (design = 'f-aCFO', target, p.true, init.level,  
                ncohort, cohortsize, assess.window, tte.para, accrual.rate, accrual.dist, seed = 1)
print(faCFOtrial)

## summarize the object returned by CFO.oc()
faCFOoc <- CFO.oc (nsimu, design = 'f-aCFO', target, p.true, init.level, ncohort, cohortsize,
                      assess.window, tte.para, accrual.rate, accrual.dist, seeds = 1:nsimu)
print(faCFOoc)

## settings for 2dCFO
p.true <- matrix(c(0.05, 0.10, 0.15, 0.30, 0.45,
0.10, 0.15, 0.30, 0.45, 0.55,
0.15, 0.30, 0.45, 0.50, 0.60), 
nrow = 3, ncol = 5, byrow = TRUE)

cns <- matrix(c(3, 3, 0,
                0, 6, 0,
                0, 0, 0), 
              nrow = 3, ncol = 3, byrow = TRUE)
cys <- matrix(c(0, 1, 0,
                0, 2, 0,
                0, 0, 0), 
              nrow = 3, ncol = 3, byrow = TRUE)
currdose <- c(2,3); target <- 0.3; ncohort <- 12; cohortsize <- 3

## summarize the object returned by CFO2d.next()
decision <- CFO2d.next(target, cys, cns, currdose = currdose, seed = 1)
print(decision)

## summarize the object returned by CFO2d.selectmtd()
ntox <- matrix(c(0, 0, 2, 0, 0, 0, 2, 7, 0, 0, 0, 2, 0, 0, 0), nrow = 3, ncol = 5, byrow = TRUE)
npts <- matrix(c(3, 0, 12, 0, 0, 3, 12, 24, 0, 0, 3, 3, 0, 0, 0), nrow = 3, ncol = 5, byrow = TRUE)
selmtd <- CFO2d.selectmtd(target=0.3, npts=npts, ntox=ntox)
print(selmtd)

## summarize the object returned by CFO2d.simu()
CFO2dtrial <- CFO2d.simu(target, p.true, init.level = c(1,1), ncohort, cohortsize, seed = 1)
print(CFO2dtrial)

## summarize the object returned by CFO2d.oc()
CFO2doc <- CFO2d.oc(nsimu = 5, target, p.true, init.level = c(1,1), ncohort, cohortsize, 
                    seeds = 1:5)
print(CFO2doc)

## summarize the object returned by CFOeff.next()
decision <- CFOeff.next(target=0.4,axs=c(3,1,7,11,26),ays=c(0,0,0,0,6),
              ans= c(6, 3, 12, 17, 36), currdose = 3, mineff = 0.3)
print(decision)

## summarize the object returned by CFOeff.simu()
target <- 0.30; mineff <- 0.30
prior.para = list(alp.prior = target, bet.prior = 1 - target, 
                  alp.prior.eff = 0.5, bet.prior.eff = 0.5)
p.true=c(0.05, 0.07, 0.1, 0.12, 0.16)
pE.true=c(0.35, 0.45, 0.5, 0.55, 0.75)
result <- CFOeff.simu(target, p.true, pE.true, ncohort, init.level, cohortsize,
                       prior.para, mineff = mineff, seed = 1)
print(result)

## summarize the object returned by CFOeff.oc()
nsimu = 10
result <- CFOeff.oc(target, p.true, pE.true, prior.para, 
          init.level,cohortsize, ncohort, nsimu, mineff = mineff, seeds = 1:nsimu)
print(result)
# }

Run the code above in your browser using DataLab