library(CNORfeeder)
# this is an example of the main steps of the integrated CellNOptR - CNORfeeder pipeline
# load the data already formatted as CNOlist
data(CNOlistDREAM,package="CellNOptR")
# load the model (PKN) already in the CNO format
data(DreamModel,package="CellNOptR")
# see CellNOptR documentation to import other data/PKNs)
# A. INFERENCE - CNORfeeder
# FEED inference: codified in Boolean Tables
BTable <- makeBTables(CNOlist=CNOlistDREAM, k=2, measErr=c(0.1, 0))
# B. COMPRESSION - CellNOptR
# preprocessing step
model<-preprocessing(data=CNOlistDREAM, model=DreamModel)
# C. INTEGRATION - CNORfeeder
# integration with the compressed model
modelIntegr <- mapBTables2model(BTable=BTable,model=model,allInter=TRUE)
# see example in ?MapDDN2Model to use other reverse-engineering methods
# D. WEGHTING - CNORfeeder
# integrated links are weighted more according to the integratin factor integrFac
modelIntegrWeight <- weighting(modelIntegr=modelIntegr, PKNmodel=DreamModel,
CNOlist=CNOlistDREAM, integrFac=10)
# E. TRAINING - CellNOptR
initBstring<-rep(1,length(modelIntegr$reacID))
# training to data using genetic algorithm (run longer to obtain better results)
DreamT1opt<-gaBinaryT1W(
CNOlist=CNOlistDREAM,
model=modelIntegrWeight,
initBstring=initBstring,
maxGens=2,
popSize=5,
verbose=FALSE)
Run the code above in your browser using DataLab