powered by
modelfit is used following a glm() or glm.nb() model to produce a list of model fit statistics.
modelfit(x)
number of model observatiions
AIC statistic
number of model predictors
residial degrees of freedom
AIC, 'aic'/'obs'
log-likelihood
BIC - Raftery parameterization
BIC - log-likelihood Standard definition (Stata)
Hannan-Quinn IC statistic (Limdep)
the only argument is the name of the fitted glm or glm.nb function model
Joseph M. Hilbe, Arizona State University, and Jet Propulsion Laboratory, California Institute of technology
modelfit is to be used as a post-estimation function, following the use of glm() or glm.nb().
Hilbe, J.M. (2011), Negative Binomial Regression, second edition, Cambridge University Press.
Hilbe, J.M. (2009), Logistic Regression Models, Chapman Hall/CRC
glm, glm.nb
glm
glm.nb
## Hilbe (2011), Table 9.17 library(MASS) data(lbwgrp) nb9_3 <- glm.nb(lowbw ~ smoke + race2 + race3 + offset(log(cases)), data=lbwgrp) summary(nb9_3) exp(coef(nb9_3)) modelfit(nb9_3)
Run the code above in your browser using DataLab