Learn R Programming

⚠️There's a newer version (1.3.5) of this package.Take me there.

COUNT (version 1.3.4)

Functions, Data and Code for Count Data

Description

Functions, data and code for Hilbe, J.M. 2011. Negative Binomial Regression, 2nd Edition (Cambridge University Press) and Hilbe, J.M. 2014. Modeling Count Data (Cambridge University Press).

Copy Link

Version

Install

install.packages('COUNT')

Monthly Downloads

968

Version

1.3.4

License

GPL-2

Maintainer

Andrew Robinson Joseph M Hilbe hilbeasuedu

Last Published

October 19th, 2016

Functions in COUNT (1.3.4)

lbwgrp

lbwgrp
lbw

lbw
badhealth

badhealth
azcabgptca

azcabgptca
fishing

fishing
fasttrakg

fasttrakg
azprocedure

azprocedure
azpro

azpro
azdrg112

azdrg112
affairs

affairs
loomis

loomis
medpar

medpar
ml.nb1

NB1: maximum likelihood linear negative binomial regression
myTable

Frequency table
ml.nbc

NBC: maximum likelihood linear negative binomial regression
modelfit

Fit Statistics for generalized linear models
ml.pois

NB2: maximum likelihood Poisson regression
nuts

nuts
ml.nb2

NB2: maximum likelihood linear negative binomial regression
mdvis

mdvis
rwm

rwm
rwm1984

rwm1984
smoking

smoking
titanic

titanic
titanicgrp

titanicgrp
ships

ships
rwm5yr

rwm5yr
logit_syn

Logistic regression : generic synthetic binary/binomial logistic data and model
nbc_syn

Negative binomial (NB-C): generic synthetic canonical negative binomial data and model
nb2_syn

Negative binomial (NB2): generic synthetic negative binomial data and model
nb1_syn

Negative binomial (NB1): generic synthetic linear negative binomial data and model
probit_syn

Probit regression : generic synthetic binary/binomial probit data and model
poisson_syn

Poisson : generic synthetic Poisson data and model
poi.obs.pred

Table of Poisson counts: observed vs predicted proportions and difference
nb2.obs.pred

Table of negative binomial counts: observed vs predicted proportions and difference