##For this example we will use the a subset of the SEP3 ChIP-seq data (Kaufmann, 2009)
data("CSAR-dataset");
##We calculate the number of hits for each nucleotide posotion for the control and sample. We do that just for chromosome chr1, and for positions 1 to 10kb
nhitsS<-mappedReads2Nhits(sampleSEP3_test,file="sampleSEP3_test",chr=c("CHR1v01212004"),chrL=c(10000))
nhitsC<-mappedReads2Nhits(controlSEP3_test,file="controlSEP3_test",chr=c("CHR1v01212004"),chrL=c(10000))
##We calculate a score for each nucleotide position
test<-ChIPseqScore(control=nhitsC,sample=nhitsS)
##We calculate the candidate read-enriched regions
win<-sigWin(test)
##We generate a wig file of the results to visualize tehm in a genome browser
score2wig(test,file="test.wig")
##We calculate relative positions of read-enriched regions regarding gene position
d<-distance2Genes(win=win,gff=TAIR8_genes_test)
##We calculate table of genes with read-enriched regions, and their location
genes<-genesWithPeaks(d)
##We calculate two sets of read-enrichment scores through permutation
permutatedWinScores(nn=1,sample=sampleSEP3_test,control=controlSEP3_test,fileOutput="test",chr=c("CHR1v01212004"),chrL=c(100000))
permutatedWinScores(nn=2,sample=sampleSEP3_test,control=controlSEP3_test,fileOutput="test",chr=c("CHR1v01212004"),chrL=c(100000))
###Next function will get all permutated score values generated by permutatedWinScores function.
##This represent the score distribution under the null hypotesis and therefore it can be use to control the error of our test.
nulldist<-getPermutatedWinScores(file="test",nn=1:2)
##From this distribution, several cut-off values can be calculated to control the error of our test.
##Several functions in R can be used for this purpose.
##In this package we had implemented a simple method for the control of the error based on FDR"
getThreshold(winscores=values(win)$score,permutatedScores=nulldist,FDR=.01)
Run the code above in your browser using DataLab