Learn R Programming

CSAR (version 1.24.0)

distance2Genes: Calculate relative positions of read-enriched regions regarding gene position

Description

Calculate relative positions of read-enrichment regions regarding gene position

Usage

distance2Genes(win, gff, t = 1, d1 = -3000, d2 = 1000)

Arguments

win
GRange structure obtained with the function sigWin
gff
Data.frame structure obtained after loading a desired gff file
t
Integer. Only distances of read-enriched regions with a score bigger than t will be considered
d1
Negative integer. Minimum relative position regarding the start of the gene to be considered
d2
Positive integer. Maximum relative position regarding the end of the gene to be considered

Value

data.frame structure where each row represents one relative position, and each column being:
peakName
read-enriched region name
p1
relative position regarding the start of the gene
p2
relative position regarding the end of the gene
gene
name of the gene
le
length (bp) of the gene

References

Muino et al. (submitted). Plant ChIP-seq Analyzer: An R package for the statistcal detection of protein-bound genomic regions. Kaufmann et al.(2009).Target genes of the MADS transcription factor SEPALLATA3: integration of developmental and hormonal pathways in the Arabidopsis flower. PLoS Biology; 7(4):e1000090.

See Also

genesWithPeaks, CSAR-package

Examples

Run this code


##For this example we will use the a subset of the SEP3 ChIP-seq data (Kaufmann, 2009)
data("CSAR-dataset");
##We calculate the number of hits for each nucleotide posotion for the control and sample. We do that just for chromosome chr1, and for positions 1 to 10kb
nhitsS<-mappedReads2Nhits(sampleSEP3_test,file="sampleSEP3_test",chr=c("CHR1v01212004"),chrL=c(10000))
nhitsC<-mappedReads2Nhits(controlSEP3_test,file="controlSEP3_test",chr=c("CHR1v01212004"),chrL=c(10000))


##We calculate a score for each nucleotide position
test<-ChIPseqScore(control=nhitsC,sample=nhitsS)

##We calculate the candidate read-enriched regions
win<-sigWin(test)


##We calculate relative positions of read-enriched regions regarding gene position
d<-distance2Genes(win=win,gff=TAIR8_genes_test)

Run the code above in your browser using DataLab