Learn R Programming

CSAR (version 1.24.0)

genesWithPeaks: Provide table of genes with read-enriched regions, and their location

Description

Provide table of genes with read-enriched regions, and their location

Usage

genesWithPeaks(distances)

Arguments

distances
data.frame structure obtained by distances2Genes

Value

data.frame structure with each coloumn being:
name
name of the gene
max3kb1kb
maximum score value for the region 3Kb upstream to 1Kb dowstream
u3000
maximum score value for the region 3Kb upstream to 2Kb upstream
u2000
maximum score value for the region 2Kb upstream to 1Kb upstream
u1000
maximum score value for the region 1Kb upstream to 0Kb upstream
d0
maximum score value for the region 0Kb upstream to 0Kb dowstream
d1000
maximum score value for the region 0Kb dowstream to 1Kb dowstream

Details

This function report for each gene, the maximum peak score in different regions near of the gene. The input of the function is the distances between genes and peaks calculated by distance2Genes

References

Muino et al. (submitted). Plant ChIP-seq Analyzer: An R package for the statistcal detection of protein-bound genomic regions. Kaufmann et al.(2009).Target genes of the MADS transcription factor SEPALLATA3: integration of developmental and hormonal pathways in the Arabidopsis flower. PLoS Biology; 7(4):e1000090.

See Also

distance2Genes,CSAR-package

Examples

Run this code

##For this example we will use the a subset of the SEP3 ChIP-seq data (Kaufmann, 2009)
data("CSAR-dataset");
##We calculate the number of hits for each nucleotide posotion for the control and sample. We do that just for chromosome chr1, and for positions 1 to 10kb
nhitsS<-mappedReads2Nhits(sampleSEP3_test,file="sampleSEP3_test",chr=c("CHR1v01212004"),chrL=c(10000))
nhitsC<-mappedReads2Nhits(controlSEP3_test,file="controlSEP3_test",chr=c("CHR1v01212004"),chrL=c(10000))


##We calculate a score for each nucleotide position
test<-ChIPseqScore(control=nhitsC,sample=nhitsS)

##We calculate the candidate read-enriched regions
win<-sigWin(test)

##We calculate relative positions of read-enriched regions regarding gene position
d<-distance2Genes(win=win,gff=TAIR8_genes_test)

##We calculate table of genes with read-enriched regions, and their location
genes<-genesWithPeaks(d)


Run the code above in your browser using DataLab