Learn R Programming

CausalR (version 1.4.3)

CalculateSignificanceUsingCubicAlgorithm1b: Calculate Significance Using Cubic Algorithm

Description

Calculate the p-value of a score given the hypothesis score and the distribution table (calculated using the cubic algorithm 1b in Assessing statistical significance in causal graphs - Chindelevitch et al)

Usage

CalculateSignificanceUsingCubicAlgorithm1b(hypothesisScore, predictionListStats, experimentalDataStats, epsilon)

Arguments

hypothesisScore
The score whose p-value we want to find.
predictionListStats
Number of predicted up-regulated, predicted down-regulated and ambiguous predictions.
experimentalDataStats
Number of up-regulated, down-regulated and not significantly changed transcripts in the experimental data.
epsilon
The threshold that is used when calculating the p-value using the cubic algorithm. (Defaults to 1e-5, only used for the cubic algorithm, ignored if useCubicAlgorithm is FALSE.)

Value

p value

Examples

Run this code
CalculateSignificance(5, c(7,4,19), c(6,6,18))
CalculateSignificance(5, c(7,4,19), c(6,6,18), useCubicAlgorithm=TRUE)
CalculateSignificanceUsingQuarticAlgorithm(5, c(7,4,19), c(6,6,18))
CalculateSignificance(5, c(7,4,19), c(6,6,18), useCubicAlgorithm=FALSE)
CalculateSignificance(5, c(7,4,19), c(6,6,18), 1e-5)
CalculateSignificance(5, c(7,4,19), c(6,6,18), epsilon=1e-5, useCubicAlgorithm=TRUE)
CalculateSignificanceUsingCubicAlgorithm1b(5, c(7,4,19), c(6,6,18), 1e-5)

Run the code above in your browser using DataLab