Rdocumentation
powered by
Learn R Programming
CausalR (version 1.4.3)
Causal Reasoning Methods
Description
Causal reasoning methods for biological networks, to enable regulator prediction and reconstruction of regulatory networks from high dimensional data.
Copy Link
Link to current version
Version
Version
1.4.3
1.0.0
Version
1.4.3
License
GPL (>= 2)
Maintainer
Glyn Bradley
Last Published
February 15th, 2017
Functions in CausalR (1.4.3)
Search all functions
CalculateEnrichmentPValue
calculates an enrichment p-value
AddIDsToVertices
add IDs to vertices
AddWeightsToEdges
add weights to edges
CalculateWeightGivenValuesInThreeByThreeContingencyTable
calculate weight given values in three-by-three contingency table
CausalR-package
The CausalR package
GetNodeID
get CCG node ID
GetNodeName
get node name
GetApproximateMaximumDValueFromTwoByTwoContingencyTable
computes an approximate maximum D value or weight
GetCombinationsOfCorrectandIncorrectPredictions
returns table of correct and incorrect predictions
GetWeightsAboveHypothesisScoreForAThreeByTwoTable
updates weights for contingency table and produce values for p-value calculation
GetWeightsAboveHypothesisScoreAndTotalWeights
get weights above hypothesis score and total weights
GetWeightsFromInteractionInformation
get weights from interaction information
MakePredictions
make predictions
runRankHypothesis
run rank the hypothesis
RemoveIDsNotInExperimentalData
remove IDs not in experimental data
CalculateSignificanceUsingCubicAlgorithm
calculate significance using the cubic algorithm
CalculateSignificanceUsingCubicAlgorithm1b
Calculate Significance Using Cubic Algorithm
CheckPossibleValuesAreValid
check possible values are valid
GetApproximateMaximumDValueFromThreeByTwoContingencyTable
returns approximate maximum D value or weight for a 3x2 superfamily
GetAllPossibleRoundingCombinations
get score for numbers of correct and incorrect predictions
CheckRowAndColumnSumValuesAreValid
check row and column sum values are valid
CompareHypothesis
compare hypothesis
GetPathsInSifFormat
Get paths in Sif format
GetNumberOfPositiveAndNegativeEntries
counts the number of positive and negative entries
ComputeFinalDistribution
compute final distribution
GetShortestPathsFromCCG
get shortest paths from CCG
GetWeightForNumbersOfCorrectandIncorrectPredictions
get weight for numbers of correct and incorrect predictions
ProcessExperimentalData
process experimental data
WriteExplainedNodesToSifFile
Write explained nodes to Sif file
RankTheHypotheses
rank the hypotheses
CreateCG
create a Computational Graph (CG)
CalculateSignificance
calculate overall significance p-value
FindIdsOfConnectedNodesInSubgraph
find Ids of connected nodes in subgraph
CreateNetworkFromTable
create network from table
FindMaximumDValue
find maximum D value
GetMatrixOfCausalRelationships
compute causal relationships matrix
GetMaxDValueForAFamily
get maximun D value for a family
GetScoresWeightsMatrixByCubicAlg
get scores weights matrix by the cubic algorithm
PopulateTheThreeByThreeContingencyTable
populate the three-by-three contingency table
GetScoresWeightsMatrix
get scores weight matrix
PopulateTwoByTwoContingencyTable
Populate Two by Two Contingency Table
ReadSifFileToTable
read .sif to Table
ReadExperimentalData
read experimental data
AnalyseExperimentalData
analyse experimental data
AnalysePredictionsList
analyse predictions list
ComputePValueFromDistributionTable
compute a p-value from the distribution table
GetExplainedNodesOfCCG
Get explained nodes of CCG
CreateCCG
create a Computational Causal Graph (CCG)
GetInteractionInformation
returns interaction information from input data
GetRegulatedNodes
get regulated nodes
GetRowAndColumnSumValues
get row and column sum values
GetScoresForSingleNode
Get scores for single node
GetScoreForNumbersOfCorrectandIncorrectPredictions
returns the score for a given number of correct and incorrect predictions
MakePredictionsFromCCG
make predictions from CCG
MakePredictionsFromCG
make predictions from CG
runSCANR
run ScanR
ScoreHypothesis
score hypothesis
CalculateSignificanceUsingQuarticAlgorithm
calculate significance using the quartic algorithm
CalculateTotalWeightForAllContingencyTables
calculate total weight for all contingency tables
DetermineInteractionTypeOfPath
determine interaction type of path
FindApproximateValuesThatWillMaximiseDValue
find approximate values that will maximise D value
GetMaxDValueForAThreeByTwoFamily
get maximum D value for three-by-two a family
GetSetOfDifferentiallyExpressedGenes
get set of differientially expressed genes
GetMaximumDValueFromTwoByTwoContingencyTable
get maximum D value from two-by-two contingency table
GetSetOfSignificantPredictions
get set of significant predictions
OrderHypotheses
order hypotheses
PlotGraphWithNodeNames
plot graph with node names
ValidateFormatOfDataTable
validate format of the experimental data table
ValidateFormatOfTable
validate format of table