if(require(curatedOvarianData) && require(sparsediscrim))
{
data(TCGA_eset)
badOutcome <- which(pData(TCGA_eset)[, "vital_status"] == "deceased" & pData(TCGA_eset)[, "days_to_death"] <= 365)
goodOutcome <- which(pData(TCGA_eset)[, "vital_status"] == "living" & pData(TCGA_eset)[, "days_to_death"] >= 365 * 5)
TCGA_eset <- TCGA_eset[, c(badOutcome, goodOutcome)]
classes <- factor(rep(c("Poor", "Good"), c(length(badOutcome), length(goodOutcome))))
pData(TCGA_eset)[, "class"] <- classes
result <- runTests(TCGA_eset, "Ovarian Cancer", "Differential Expression", resamples = 2, fold = 2)
sampleDistribution <- distribution(result, "samples", xLabel = "Sample Error Rate",
title = "Distribution of Error Rates")
featureDistribution <- distribution(result, "features", summaryType = "count", plotType = "histogram",
xLabel = "Number of Cross-validations", yLabel = "Count",
binwidth = 1)
print(head(sampleDistribution))
print(head(featureDistribution))
}
Run the code above in your browser using DataLab