if(require(parathyroidSE) && require(sparsediscrim) && require(PoiClaClu))
{
data(parathyroidGenesSE)
expression <- assays(parathyroidGenesSE)[[1]]
DPN <- which(colData(parathyroidGenesSE)[, "treatment"] == "DPN")
control <- which(colData(parathyroidGenesSE)[, "treatment"] == "Control")
expression <- expression[, c(control, DPN)]
classes <- rep(c("Contol", "DPN"), c(length(control), length(DPN)))
expression <- expression[rowSums(expression > 1000) > 8, ] # Make small dataset.
edgeRselection(expression, classes, "DPN Treatment",
trainParams = TrainParams(classifyInterface, TRUE, TRUE),
predictParams = PredictParams(function(){}, TRUE, getClasses = function(result) result[["ytehat"]]),
resubstituteParams = ResubstituteParams(nFeatures = seq(10, 100, 10),
performanceType = "balanced", better = "lower"))
}
Run the code above in your browser using DataLab