Learn R Programming

ClassifyR (version 1.6.2)

errorMap: Plot a Grid of Sample Error Rates

Description

A grid of coloured tiles is drawn. There is one column for each sample and one row for each classification result.

Usage

"errorMap"(results, comparison = c("classificationName", "datasetName", "selectionName", "validation"), errorColours = list(c("#0000FF", "#3F3FFF", "#7F7FFF", "#BFBFFF", "#FFFFFF"), c("#FF0000", "#FF3F3F", "#FF7F7F", "#FFBFBF", "#FFFFFF")), classColours = c("blue", "red"), fontSizes = c(24, 16, 12, 12, 12), mapHeight = 4, title = "Error Comparison", showLegends = TRUE, xAxisLabel = "Sample Name", showXtickLabels = TRUE, showYtickLabels = TRUE, yAxisLabel = "Analysis", legendSize = grid::unit(1, "lines"), plot = TRUE)

Arguments

results
A list of ClassifyResult objects.
comparison
The aspect of the experimental design to compare.
errorColours
A vector of colours for error levels.
classColours
Either a vector of colours for class levels if both classes should have same colour, or a list of length 2, with each component being a vector of the same length. The vector has the colour gradient for each class.
fontSizes
A vector of length 5. The first number is the size of the title. The second number is the size of the axes titles. The third number is the size of the axes values. The fourth number is the size of the legends' titles. The fifth number is the font size of the legend labels.
mapHeight
Height of the map, relative to the height of the class colour bar.
title
The title to place above the plot.
showLegends
Logical. IF FALSE, the legend is not drawn.
xAxisLabel
The name plotted for the x-axis. NULL suppresses label.
showXtickLabels
Logical. IF FALSE, the x-axis labels are hidden.
showYtickLabels
Logical. IF FALSE, the y-axis labels are hidden.
yAxisLabel
The name plotted for the y-axis. NULL suppresses label.
legendSize
The size of the boxes in the legends.
plot
Logical. IF TRUE, a plot is produced on the current graphics device.

Value

A plot is produced and a grob is returned that can be saved to a graphics device.

Details

The names of results determine the row names that will be in the plot. The length of errorColours determines how many bins the error rates will be discretised to.

Examples

Run this code
  predicted <- data.frame(sample = sample(10, 100, replace = TRUE),
                          label = rep(c("Healthy", "Cancer"), each = 50))
  actual <- factor(rep(c("Healthy", "Cancer"), each = 5))
  result1 <- ClassifyResult("Example", "Differential Expression", "t-test",
                            LETTERS[1:10], LETTERS[10:1], list(1:100), list(sample(10, 10)),
                            list(predicted), actual, list("fold", 100, 5))
  predicted[, "label"] <- sample(predicted[, "label"])
  result2 <- ClassifyResult("Example", "Differential Variability", "F-test",
                            LETTERS[1:10], LETTERS[10:1], list(1:100), list(sample(10, 10)),
                            list(predicted), actual, validation = list("leave", 1))
  wholePlot <- errorMap(list(Gene = result1, Protein = result2))
  # if(require(ggplot2))
    # ggsave("wholePlot.png", wholePlot)

Run the code above in your browser using DataLab