if(require(sparsediscrim))
{
# First 20 features have bimodal distribution for Poor class. Other 80 features have normal distribution for
# both classes.
genesMatrix <- sapply(1:25, function(sample) c(rnorm(20, sample(c(8, 12), 20, replace = TRUE), 1), rnorm(80, 10, 1)))
genesMatrix <- cbind(genesMatrix, sapply(1:25, function(sample) rnorm(100, 10, 1)))
classes <- factor(rep(c("Poor", "Good"), each = 25))
likelihoodRatioSelection(genesMatrix, classes, "Example",
trainParams = TrainParams(naiveBayesKernel, FALSE, TRUE),
predictParams = PredictParams(function(){}, FALSE, getClasses = function(result) result),
resubstituteParams = ResubstituteParams(nFeatures = seq(10, 100, 10), performanceType = "balanced", better = "lower"))
}
Run the code above in your browser using DataLab