if(require(sparsediscrim))
{
# Genes 76 to 100 have differential expression.
genesMatrix <- sapply(1:25, function(sample) c(rnorm(100, 9, 2)))
genesMatrix <- cbind(genesMatrix, sapply(1:25, function(sample)
c(rnorm(75, 9, 2), rnorm(25, 14, 2))))
rownames(genesMatrix) <- paste("Gene", 1:100)
classes <- factor(rep(c("Poor", "Good"), each = 25))
resubstitute <- ResubstituteParams(nFeatures = seq(10, 100, 10),
performanceType = "err", better = "lower")
result <- runTests(genesMatrix, classes, "Ovarian Cancer", "Differential Expression",
resamples = 2, fold = 2,
params = list(SelectParams(limmaSelection, resubstituteParams = resubstitute),
TrainParams(dlda, TRUE, FALSE),
PredictParams(predict, TRUE, getClasses = function(result) result[["class"]])))
# Genes 74 to 98 have differential expression in new dataset.
newDataset <- sapply(1:25, function(sample) c(rnorm(100, 9, 2)))
newDataset <- cbind(newDataset, rbind(sapply(1:25, function(sample) rnorm(73, 9, 2)),
sapply(1:25, function(sample) rnorm(25, 14, 2)),
sapply(1:25, function(sample) rnorm(2, 14, 2))))
newerResult <- runTests(newDataset, classes, "Ovarian Cancer Updated", "Differential Expression",
resamples = 2, fold = 2,
params = list(SelectParams(previousSelection, intermediate = ".iteration",
classifyResult = result),
TrainParams(dlda, TRUE, FALSE),
PredictParams(predict, TRUE, getClasses = function(result) result[["class"]])))
}
Run the code above in your browser using DataLab