Learn R Programming

ClueR (version 1.0)

fuzzPlot: Visualize fuzzy clustering results

Description

Takes in a time-course matrix and its clustering results as a cmeans clustering object. Produce a plot to visualize the clustering results.

Usage

fuzzPlot(Tc, clustObj, mfrow = c(1, 1), cols, min.mem = 0,
  new.window = FALSE, llwd = 3)

Arguments

Tc
a numeric matrix to be clustered. The columns correspond to the time-course and the rows correspond to phosphorylation sites.
clustObj
the clustering of Tc generated from cmeans or kmeans clustering.
mfrow
control the subplots in graphic window.
cols
color palette to be used for plotting. If the color argument remains empty, the default palette is used.
min.mem
phosphorylation sites with membership values below min.mem will not be displayed.
new.window
should a new window be opened for graphics.
llwd
line width. Default is 3.

Examples

Run this code
# load the human ES phosphoprotoemics data (Rigbolt et al. Sci Signal. 4(164):rs3, 2011)
data(hES)
# apply cmeans clustering to partition the data into 11 clusters
library(e1071)
clustObj <- cmeans(hES, centers=11, iter.max=50, m=1.25)
# visualize clustering reuslts
fuzzPlot(hES, clustObj, mfrow = c(3,4))

Run the code above in your browser using DataLab