Last chance! 50% off unlimited learning
Sale ends in
runClue(Tc, annotation, rep = 10, kRange, clustAlg = "cmeans",
effectiveSize = c(5, 100), pvalueCutoff = 0.05)
# load the human ES phosphoprotoemics data (Rigbolt et al. Sci Signal. 4(164):rs3, 2011)
data(hES)
# load the PhosphoSitePlus annotations (Hornbeck et al. Nucleic Acids Res. 40:D261-70, 2012)
data(PhosphoSite)
# make a subset of hES dataset for demonstrating the example in a short time frame
ids <- c("CK2A1", "ERK1", "ERK2", "CDK7",
"p90RSK", "p70S6K", "PKACA", "CDK1", "DNAPK", "ATM", "CDK2")
hESs <- hES[rownames(hES) %in% unlist(PhosphoSite.human[ids]),]
# run CLUE with a repeat of 3 times and a range from 2 to 13
set.seed(2)
clueObj <- runClue(Tc=hESs, annotation=PhosphoSite.human, rep=2, kRange=13)
# visualize the evaluation outcome
Ms <- apply(clueObj$evlMat, 2, mean, na.rm=TRUE)
Ss <- apply(clueObj$evlMat, 2, sd, na.rm=TRUE)
library(Hmisc)
errbar(1:length(Ms), Ms, Ms+Ss, Ms-Ss, cex=1.2, type="b", xaxt="n", xlab="k", ylab="E")
axis(1, at=1:12, labels=paste("k=", 2:13, sep=""))
# generate the optimal clustering results
best <- clustOptimal(clueObj, rep=10, mfrow=c(3, 4))
# list enriched clusters
best$enrichList
# obtain the optimal clustering object (not run)
# best$clustObj
Run the code above in your browser using DataLab