# #Load all the data included in the CoSeg package.
# data(BRCA1Frequencies.df, package="CoSeg")
# data(BRCA2Frequencies.df, package="CoSeg")
# data(MLH1Frequencies.df, package="CoSeg")
# data(USDemographics.df, package="CoSeg")
# data(ChinaDemographics.df, package="CoSeg")
#summaries of all the data
str(BRCA1Frequencies.df)
str(BRCA2Frequencies.df)
str(MLH1Frequencies.df)
str(USDemographics.df)
str(ChinaDemographics.df)
#Make a tree with no affection status, g=4 generations above, gdown=2 generations below
#seed.age=50, and demographics.df=NULL which defaults to USDemographics.df.
tree1=MakeTree()
#Make a tree using Chinese demographics instead.
tree2=MakeTree(demographics.df=ChinaDemographics.df)
#Add affection statust to tree2 using BRCA1Frequencies.df which gives the BRCA1
#penetrance function
tree1a=AddAffectedToTree(tree.f=tree1,frequencies.df=BRCA1Frequencies.df)
#make a tree with affection status (same as running MakeTree() and then AddAffectedToTree())
tree3=MakeAffectedTrees(n=1,g=2,gdown=2,frequencies.df=MLH1Frequencies.df)
#tree4=MakeAffectedTrees(n=1,g=2,gdown=2,frequencies.df=BRCA2Frequencies.df)
#Depending on the size of the pedigree generated, probands (defined here as members of the
#pedigree who are carriers of the genotype with the disease) may not always be present in
#the pedigree. To alleviate this problem in this example we manually generate a pedigree.
#Note that this is from the Mohammadi paper where the Likelihood method originates from.
ped=data.frame(degree=c(3,2,2,3,3,1,1,2,2,3), momid=c(3,NA,7,3,3,NA,NA,7,NA,8),
dadid=c(2,NA,6,2,2,NA,NA,6,NA,9), id=1:10, age=c(45,60,50,31,41,68,65,55,62,43),
female=c(1,0,1,0,1,0,1,1,0,1), y.born=0, dead=0, geno=2, famid=1, bBRCA1.d=0, oBRCA1.d=0,
bBRCA1.aoo=NA, oBRCA1.aoo=NA, proband=0)
ped$y.born=2010-ped$age
ped$geno[c(1,3)]=1
ped$bBRCA1.d[c(1,3)]=1
ped$bBRCA1.aoo[1]=45
ped$bBRCA1.aoo[3]=50
ped$proband[1]=1
ped=ped[c(6,7,2,3,8,9,1,4,5,10),]
#Calculate the likelihood ratio
CalculateLikelihoodRatio(ped=ped, affected.vector={ped$bBRCA1.d|ped$oBRCA1.d}, gene="BRCA1")
#Plot the pedigree
PlotPedigree(ped, affected.vector={ped$bBRCA1.d|ped$oBRCA1.d})
#Rank and plot the members of the pedigree with unknown genotypes
RankMembers(ped=ped, affected.vector={ped$bBRCA1.d|ped$oBRCA1.d}, gene="BRCA1")
Run the code above in your browser using DataLab