Learn R Programming

CoTiMA (version 0.7.0)

Continuous Time Meta-Analysis ('CoTiMA')

Description

The 'CoTiMA' package performs meta-analyses of correlation matrices of repeatedly measured variables taken from studies that used different time intervals. Different time intervals between measurement occasions impose problems for meta-analyses because the effects (e.g. cross-lagged effects) cannot be simply aggregated, for example, by means of common fixed or random effects analysis. However, continuous time math, which is applied in 'CoTiMA', can be used to extrapolate or intrapolate the results from all studies to any desired time lag. By this, effects obtained in studies that used different time intervals can be meta-analyzed. 'CoTiMA' fits models to empirical data using the structural equation model (SEM) package 'ctsem', the effects specified in a SEM are related to parameters that are not directly included in the model (i.e., continuous time parameters; together, they represent the continuous time structural equation model, CTSEM). Statistical model comparisons and significance tests are then performed on the continuous time parameter estimates. 'CoTiMA' also allows analysis of publication bias (Egger's test, PET-PEESE estimates, zcurve analysis etc.) and analysis of statistical power (post hoc power, required sample sizes). See Dormann, C., Guthier, C., & Cortina, J. M. (2019) . and Guthier, C., Dormann, C., & Voelkle, M. C. (2020) .

Copy Link

Version

Install

install.packages('CoTiMA')

Monthly Downloads

546

Version

0.7.0

License

GPL-3

Issues

Pull Requests

Stars

Forks

Maintainer

Markus Homberg

Last Published

December 16th, 2023

Functions in CoTiMA (0.7.0)

CoTiMAInitFit_6

ctmaInit-object with 6 primary studies
ageSD128

ageSD128 example vector
addedByResearcher3

addedByResearcher3 example vector
burnout2

burnout2 example vector
CoTiMAMod2on23Fit_6

ctmaFit-object with a continuous moderator of 2 cross effects
burnout201

burnout201 example vector
country3

country3 example vector
addedByResearcher313

addedByResearcher313 example vector
country201

country201 example vector
ctmaBiGOMX

ctmaBiGOMX
ctmaCombPRaw

ctmaCombPRaw
A313

A313 example matrix
ctmaLabels

ctmaLabels
ctmaOptimizeFit

ctmaOptimizeFit
ageSD313

ageSD313 example vector
ageSD32

ageSD32 example vector
addedByResearcher2

addedByResearcher2 example vector
CoTiMAInitFit_D_BO

ctmaInit-object created by Guthier et al. (2020) with 48 primary studies
CoTiMAMod1onFullFit_6

ctmaFit-object with a categorical moderator of the full drift matrix
CoTiMAInitFit_6_new

ctmaInit-object with 6 primary studies
CoTiMAInitFit_6_NUTS

ctmaInit-object with a 'full' CoTiMA of 6 studies using NUTS sampler
alphas128

alphas128 example vector
CoTiMAstudyList_6_new

ctmaPrep-object created with 6 primary studies
alphas313

alphas313 example vector
ageM201

ageM201 example vector
ageM18

ageM18 example vector
ageM2

ageM2 example vector
ageM128

ageM128 example vector
ageM313

ageM313 example vector
delta_t128

delta_t128 example vector
delta_t32

delta_t32 example vector
delta_t18

delta_t18 example vector
ageM3

ageM3 example vector
demands128

demands128 example vector
CoTiMAStanctArgs

This are preset arguments
ageSD18

ageSD18 example vector
CoTiMAstudyList_3

ctmaPrep-object created with 3 primary studies
CoTiMAoptimFit313

CoTiMAoptimFit313 example vector
burnout313

burnout313 example vector
ageSD2

ageSD2 example vector
burnout3

burnout3 example vector
CoTiMAstudyList_6

ctmaPrep-object created with 6 primary studies
ctmaAllInvFit

ctmaAllInvFit
burnout18

burnout18 example vector
burnout128

burnout128 example vector
ctmaBiG

ctmaBiG
country18

country18 example vector
dl_link

dl_link example path
empcov128

empcov128 example matrix
ctmaEqual

ctmaEqual
ageSD3

ageSD3 example vector
ctmaEmpCov

ctmaEmpCov
ctmaCompFit

ctmaCompFit
country2

country2 example vector
burnout32

burnout32 example vector
combineVariables128

combineVariables128 example vector
ageSD201

ageSD201 example vector
combineVariablesNames128

combineVariablesNames128 example vector
country313

country313 example vector
ctmaFit

ctmaFit
ctmaPlot

ctmaPlot
country32

country32 example vector
country128

country128 example vector
ctmaInit

ctmaInit
ctmaFitList

ctmaFitList
ctmaPlotCtsemMod

ctmaPlotCtsemMod
ctmaFitToPrep

ctmaFitToPrep
ctmaLCS

ctmaLCS
ctmaCorRel

ctmaCorRel
ctmaPower

ctmaPower
ctmaPrep

ctmaPrep
ctmaStdParams

ctmaStdParams
ctmaStanResample

ctmaStanResample
ctmaScaleInits

ctmaScaleInits
ctmaGetPub

ctmaGetPub
ctmaPRaw

ctmaPRaw
ctmaOptimizeInit

ctmaOptimizeInit
empcov313

empcov313 example matrix
delta_t313

delta_t313 example vector
delta_t2

delta_t2 example vector
delta_t201

delta_t201 example vector
ctmaShapeRawData

ctmaShapeRawData
demands18

demands18 example vector
delta_t3

delta_t3 example vector
ctmaRedHet

ctmaRedHet
ctmaPub

ctmaPub
ctmaSV

ctmaSV
empcov32

empcov32 example matrix
empcov2

empcov2 example matrix
empcov18

empcov18 example matrix
demands201

demands201 example vector
demands2

demands2 example vector
malePercent32

malePercent32 example vector
moderator128

moderator128 example vector
moderatorLabels

moderatorLabels example vector
occupation2

occupation2 example vector
moderatorValues

moderatorValues example vector
occupation201

occupation201 example vector
demands3

demands3 example vector
empcov201

empcov201 example matrix
empcov3

empcov3 example matrix
rawData128

rawData128 example list
source128

source128 example vector
occupation3

occupation3 example vector
occupation313

occupation313 example vector
ctmaSaveFile

ctmaSaveFile
source313

source313 example vector
source2

source2 example vector
malePercent3

malePercent3 example vector
malePercent313

malePercent313 example vector
demands313

demands313 example vector
malePercent128

malePercent128 example vector
recodeVariables128

recodeVariables128 example vector
summary.CoTiMAFit

summary.CoTiMAFit
sampleSize2

sampleSize2 example vector
malePercent18

malePercent18 example vector
occupation32

occupation32 example vector
sampleSize18

sampleSize18 example vector
targetVariables128

targetVariables128 example vector
targetVariables2

targetVariables2 example vector
demands32

demands32 example vector
malePercent2

malePercent2 example vector
pairwiseN128

pairwiseN128 example vector
variableNames128

variableNames128 example vector
moderator201

moderator201 example vector
moderator3

moderator3 example vector
moderator2

moderator2 example vector
moderator18

moderator18 example vector
malePercent201

malePercent201 example vector
occupation18

occupation18 example vector
moderator32

moderator32 example vector
moderator313

moderator313 example vector
plot.CoTiMAFit

plot.CoTiMAFit
occupation128

occupation128 example vector
pubList_8

pubList_8 example list
sampleSize3

sampleSize3 example vector
results128

results128 example list
source201

source201 example vector
source3

source3 example vector
sampleSize201

sampleSize201 example vector
sampleSize128

sampleSize128 example vector
sampleSize313

sampleSize313 example vector
sampleSize32

sampleSize32 example vector
targetVariables3

targetVariables3 example vector
targetVariables313

targetVariables313 example vector
CoTiMAMod1onFullFit_6_cats12

ctmaFit-object with a categorical moderator of the full drift matrix
A128

A128 example matrix
CoTiMAInitFit_3

ctmaInit-object with of 3 primary studies
CoTiMAFullFit_6

ctmaFit-object with a 'full' CoTiMA of 6 studies
CoTiMAFullFit_6_new

ctmaFit-object with a 'full' CoTiMA of 6 studies
CoTiMAFullInv23Fit_6

1st fitted ctmaFit-object in a series of 2 to test equality of 2 cross effects
CoTiMAFullInvEq23Fit_6

2nd fitted ctmaFit-object in a series of 2 to test equality of 2 cross effects
CoTiMABiG_D_BO

ctmaBiG-object reproducing results of Guthier et al. (2020)
CoTiMAFullFit_3

ctmaFit-object with a 'full' CoTiMA of 3 studies
CoTiMAPart134Inv3Fit_6

ctmaFit-object with with only one cross effect and this one set equal across primary studies
CoTiMAPower_D_BO

ctmaPower-object reproducing results of Guthier et al. (2020)
ageM32

ageM32 example vector