source17 <- c()
delta_t17 <- c(12)
sampleSize17 <- 440
empcov17 <- matrix(
c( 1.00, -0.60, -0.36, 0.20, 0.62, -0.47, -0.18, 0.20,
-0.60, 1.00, 0.55, -0.38, -0.43, 0.52, 0.27, -0.21,
-0.36, 0.55, 1.00, -0.47, -0.26, 0.37, 0.51, -0.28,
0.20, -0.38, -0.47, 1.00, 0.15, -0.28, -0.35, 0.56,
0.62, -0.43, -0.26, 0.15, 1.00, -0.63, -0.30, 0.27,
-0.47, 0.52, 0.37, -0.28, -0.63, 1.00, 0.55, -0.37,
-0.18, 0.27, 0.51, -0.35, -0.30, 0.55, 1.00, -0.51,
0.20, -0.21, -0.28, 0.56, 0.27, -0.37, -0.51, 1.00),
nrow=8, ncol=8)
moderator17 <- c(3, 2)
rownames(empcov17) <- colnames(empcov17) <-
c("Workload_1", "Exhaustion_1", "Cynicism_1", "Values_1",
"Workload_2", "Exhaustion_2", "Cynicism_2", "Values_2")
targetVariables17 <-
c("Workload_1", "Exhaustion_1", "Cynicism_1",
"Workload_2", "Exhaustion_2", "Cynicism_2")
recodeVariables17 <- c("Workload_1", "Workload_2")
combineVariables17 <- list("Workload_1", c("Exhaustion_1", "Cynicism_1"),
"Workload_2", c("Exhaustion_2", "Cynicism_2"))
combineVariablesNames17 <- c("Demands_1", "Burnout_1",
"Demands_2", "Burnout_2")
missingVariables17 <- c();
results17 <- ctmaEmpCov(targetVariables = targetVariables17,
recodeVariables = recodeVariables17,
combineVariables = combineVariables17,
combineVariablesNames = combineVariablesNames17,
missingVariables = missingVariables17,
nlatents = 2, sampleSize = sampleSize17,
Tpoints = 2, empcov = empcov17)
empcov17 <- results17$r
Run the code above in your browser using DataLab