Learn R Programming

CopulaDTA (version 1.0.1)

Copula Based Bivariate Beta-Binomial Model for Diagnostic Test Accuracy Studies

Description

Modelling of sensitivity and specificity on their natural scale using copula based bivariate beta-binomial distribution to yield marginal mean sensitivity and specificity. The intrinsic negative correlation between sensitivity and specificity is modelled using a copula function. A forest plot can be obtained for categorical covariates or for the model with intercept only. Nyaga VN, Arbyn M, Aerts M (2017) .

Copy Link

Version

Install

install.packages('CopulaDTA')

Monthly Downloads

18

Version

1.0.1

License

GPL-2

Maintainer

Victoria N Nyaga

Last Published

February 27th, 2023

Functions in CopulaDTA (1.0.1)

telomerase

Telomerase dataset
traceplot

A function to produce traceplots.
traceplot.cdtafit

Trace plot using ggplot2.
summary.cdtafit

Function to generate a summary a cdtafit object.
print.cdtafit

Print a summary of the fitted model.
show,cdtamodel-method

A function to print the model.
waic

Compute log pointwise predictive density, effective number of parameters and WAIC.
plot

A function to produce forest plots.
prep.data

Prepare the data
forestplot.cdtafit

Produce forest plots for categorical covariates.
cdtamodel-class

Class cdtamodel
fit

A function to fit the model.
cdtamodel

Specify the copula based bivariate beta-binomial distribution to fit to the diagnostic data.
fit.cdtamodel

Fit copula based bivariate beta-binomial distribution to diagnostic data.
ascus

ASCUS dataset
cdtafit-class

Class cdtafit
ft

Compute transform omega to ktau.