Learn R Programming

CopulaDTA (version 1.0.1)

summary.cdtafit: Function to generate a summary a cdtafit object.

Description

Function to generate a summary a cdtafit object.

Usage

# S3 method for cdtafit
summary(object, digits = 3, ...)

Value

The posterior mean and 95 percent credible intervals, n_eff, Rhat and WAIC.

Arguments

object

An object from fit.

digits

An optional positive value to control the number of digits to print when printing numeric values.

...

other stan options.

Author

Victoria N Nyaga

References

Nyaga VN, Arbyn M, Aerts M (2017). CopulaDTA: An R Package for Copula-Based Beta-Binomial Models for Diagnostic Test Accuracy Studies in a Bayesian Framework. Journal of Statistical Software, 82(1), 1-27. doi:10.18637/jss.v082.c01

Watanabe S (2010). Asymptotic Equivalence of Bayes Cross Validation and Widely Applicable Information Criterion in Singular Learning Theory. Journal of Machine Learning Research, 11, 3571-3594.

Vehtari A, Gelman A (2014). WAIC and Cross-validation in Stan. Unpublished, pp. 1-14.

Examples

Run this code
data(telomerase)
model1 <-  cdtamodel(copula = 'fgm')

model2 <- cdtamodel(copula = 'fgm',
               modelargs=list(param=2,
                              prior.lse='normal',
                              par.lse1=0,
                              par.lse2=5,
                              prior.lsp='normal',
                              par.lsp1=0,
                              par.lsp2=5))

model3 <-  cdtamodel(copula = 'fgm',
               modelargs = list(formula.se = StudyID ~ Test - 1))
if (FALSE) {

fit1 <- fit(model1,
                SID='ID',
                data=telomerase,
                iter=2000,
                warmup=1000,
                thin=1,
                seed=3)

ss <- summary(fit1)

}

Run the code above in your browser using DataLab