## Not run:
# # load the methylation data
# data(methylationDataList)
#
# #plot the low resolution profile at 5 Kb resolution
# par(mar=c(4, 4, 3, 1)+0.1)
# plotMethylationProfileFromData(methylationDataList[["WT"]],
# methylationDataList[["met1-3"]],
# conditionsNames=c("WT", "met1-3"),
# windowSize = 5000, autoscale = TRUE,
# context = c("CG", "CHG", "CHH"),
# labels = LETTERS)
#
# # compute low resolution profile in 10 Kb windows in CG context
# lowResProfileWTCG <- computeMethylationProfile(methylationDataList[["WT"]],
# region, windowSize = 10000, context = "CG")
#
# lowResProfileMet13CG <- computeMethylationProfile(
# methylationDataList[["met1-3"]], region,
# windowSize = 10000, context = "CG")
#
# lowResProfileCG <- GRangesList("WT" = lowResProfileWTCG,
# "met1-3" = lowResProfileMet13CG)
#
# # compute low resolution profile in 10 Kb windows in CHG context
# lowResProfileWTCHG <- computeMethylationProfile(methylationDataList[["WT"]],
# region, windowSize = 10000, context = "CHG")
#
# lowResProfileMet13CHG <- computeMethylationProfile(
# methylationDataList[["met1-3"]], region,
# windowSize = 10000, context = "CHG")
#
# lowResProfileCHG <- GRangesList("WT" = lowResProfileWTCHG,
# "met1-3" = lowResProfileMet13CHG)
#
# # plot the low resolution profile
# par(mar=c(4, 4, 3, 1)+0.1)
# par(mfrow=c(2,1))
# plotMethylationProfile(lowResProfileCG, autoscale = FALSE,
# labels = LETTERS[1],
# title="CG methylation on Chromosome 3",
# col=c("#D55E00","#E69F00"), pch = c(1,0),
# lty = c(4,1))
# plotMethylationProfile(lowResProfileCHG, autoscale = FALSE,
# labels = LETTERS[2],
# title="CHG methylation on Chromosome 3",
# col=c("#0072B2", "#56B4E9"), pch = c(16,2),
# lty = c(3,2))
#
# # plot the coverage in all three contexts
# plotMethylationDataCoverage(methylationDataList[["WT"]],
# methylationDataList[["met1-3"]],
# breaks = 1:15, regions = NULL,
# conditionsNames = c("WT","met1-3"),
# context = c("CG", "CHG", "CHH"),
# proportion = TRUE, labels = LETTERS, col = NULL,
# pch = c(1,0,16,2,15,17), lty = c(4,1,3,2,6,5),
# contextPerRow = FALSE)
#
# # the regions where to compute the DMRs
# regions <- GRanges(seqnames = Rle("Chr3"), ranges = IRanges(1,1E6))
#
# # compute the DMRs in CG context with noise_filter method
# DMRsNoiseFilterCG <- computeDMRs(methylationDataList[["WT"]],
# methylationDataList[["met1-3"]], regions = regions,
# context = "CG", method = "noise_filter",
# windowSize = 100, kernelFunction = "triangular",
# test = "score", pValueThreshold = 0.01,
# minCytosinesCount = 4, minProportionDifference = 0.4,
# minGap = 200, minSize = 50, minReadsPerCytosine = 4,
# cores = 1)
#
# # compute the DMRs in CG context with neighbourhood method
# DMRsNeighbourhoodCG <- computeDMRs(methylationDataList[["WT"]],
# methylationDataList[["met1-3"]], regions = regions,
# context = "CG", method = "neighbourhood",
# test = "score", pValueThreshold = 0.01,
# minCytosinesCount = 4, minProportionDifference = 0.4,
# minGap = 200, minSize = 50, minReadsPerCytosine = 4,
# cores = 1)
#
# # compute the DMRs in CG context with bins method
# DMRsBinsCG <- computeDMRs(methylationDataList[["WT"]],
# methylationDataList[["met1-3"]], regions = regions,
# context = "CG", method = "bins", binSize = 100,
# test = "score", pValueThreshold = 0.01, minCytosinesCount = 4,
# minProportionDifference = 0.4, minGap = 200, minSize = 50,
# minReadsPerCytosine = 4, cores = 1)
#
# # load the gene annotation data
# data(GEs)
#
# #select the genes
# genes <- GEs[which(GEs$type == "gene")]
#
# # the regions where to compute the DMRs
# genes <- genes[overlapsAny(genes, regions)]
#
# # filter genes that are differntially methylated in the two conditions
# DMRsGenesCG <- filterDMRs(methylationDataList[["WT"]],
# methylationDataList[["met1-3"]], potentialDMRs = genes,
# context = "CG", test = "score", pValueThreshold = 0.01,
# minCytosinesCount = 4, minProportionDifference = 0.4,
# minReadsPerCytosine = 3, cores = 1)
#
# #merge the DMRs
# DMRsNoiseFilterCGLarger <- mergeDMRsIteratively(DMRsNoiseFilterCG,
# minGap = 500, respectSigns = TRUE,
# methylationDataList[["WT"]],
# methylationDataList[["met1-3"]],
# context = "CG", minProportionDifference=0.4,
# minReadsPerCytosine = 1, pValueThreshold=0.01,
# test="score",alternative = "two.sided")
#
# #select the genes
# genes <- GEs[which(GEs$type == "gene")]
#
# # the coordinates of the area to be plotted
# chr3Reg <- GRanges(seqnames = Rle("Chr3"), ranges = IRanges(510000,530000))
#
# # load the DMRs in CG context
# data(DMRsNoiseFilterCG)
#
# DMRsCGlist <- list("noise filter"=DMRsNoiseFilterCG,
# "neighbourhood"=DMRsNeighbourhoodCG,
# "bins"=DMRsBinsCG,
# "genes"=DMRsGenesCG)
#
#
# # plot the CG methylation
# par(mar=c(4, 4, 3, 1)+0.1)
# par(mfrow=c(1,1))
# plotLocalMethylationProfile(methylationDataList[["WT"]],
# methylationDataList[["met1-3"]], chr3Reg,
# DMRsCGlist, c("WT", "met1-3"), GEs,
# windowSize=100, main="CG methylation")
#
#
# hotspotsHypo <- computeOverlapProfile(
# DMRsNoiseFilterCG[(DMRsNoiseFilterCG$regionType == "loss")],
# region, windowSize=2000, binary=TRUE, cores=1)
#
# hotspotsHyper <- computeOverlapProfile(
# DMRsNoiseFilterCG[(DMRsNoiseFilterCG$regionType == "gain")],
# region, windowSize=2000, binary=TRUE, cores=1)
#
# plotOverlapProfile(GRangesList("Chr3"=hotspotsHypo),
# GRangesList("Chr3"=hotspotsHyper),
# names=c("loss", "gain"), title="CG methylation")
# ## End(Not run)
Run the code above in your browser using DataLab