data(MC18, USCaucasian)
mixHp <- DNAmixture(list(MC18), k = 3, K = c("K1", "K2", "K3"), C = list(50),
database = USCaucasian)
p <- mixpar(rho = list(30), eta = list(34), xi = list(0.08),
phi = list(c(K1 = 0.71, K3 = 0.1, K2 = 0.19)))
mlHp <- mixML(mixHp, pars = p)
## Find the estimated covariance matrix of the MLE
V.Hp <- varEst(mixHp, mlHp$mle, npars = list(rho=1,eta=1,xi=1,phi=1))
V.Hp$cov ## using (rho, eta)
V.Hp$cov.trans ## using (mu, sigma)
## The summary is a table containing the MLE and their standard errors
summary(V.Hp)
# \donttest{
data(MC18, USCaucasian)
mixmult <- DNAmixture(list(MC18), C = list(50), k = 3, K = c("K1", "K2"), database = USCaucasian)
startpar <- mixpar(rho = list(30), eta = list(28), xi = list(0.08),
phi = list(c(U1 = 0.2, K1 = 0.7, K2 = 0.1)))
ml.mult <- mixML(mixmult, startpar)
Vmult <- varEst(mixmult, ml.mult$mle, list(rho=1,eta=1,xi=1,phi=1))
summary(Vmult)
# }
# \donttest{
## Be aware that the following two advanced examples are computationally demanding and
## typically have a runtime of several minutes with the lite-version of DNAmixtures.
data(MC15, MC18, USCaucasian)
mix <- DNAmixture(list(MC15, MC18), C = list(50, 38), k = 3, K = c("K1", "K2"),
database = USCaucasian)
startpar <- mixpar(rho = list(30, 30), eta = list(28, 35), xi = list(0.08, 0.1),
phi = list(c(U1 = 0.05, K1 = 0.7, K2 = 0.25),
c(K1 = 0.7, K2 = 0.1, U1 = 0.2)))
eqxis <- function(x){ diff(unlist(x[,"xi"])) }
## Here we set stutter equal for all traces
ml.diff <- mixML(mix, startpar, eqxis, val = 0, phi.eq = FALSE)
V.diff <- varEst(mix, ml.diff$mle, list(rho=2,eta=2,xi=1,phi=2))
summary(V.diff)
## Fixing stutter to 0.07
xival <- function(x){unlist(x[,"xi"])}
ml.eq <- mixML(mix, startpar, xival, val = c(0.07, 0.07), phi.eq = FALSE)
V.eq <- varEst(mix, ml.eq$mle, list(rho=2,eta=2,xi=0,phi=2))
summary(V.eq)
# }
Run the code above in your browser using DataLab