Compute different approximations for the non-central t-Distribution cumulative probability distribution function.
pntR (t, df, ncp, lower.tail = TRUE, log.p = FALSE,
itrmax = 1000, errmax = 1e-12, verbose = TRUE)
pntR1 (t, df, ncp, lower.tail = TRUE, log.p = FALSE,
itrmax = 1000, errmax = 1e-12, verbose = TRUE)
pnt3150 (t, df, ncp, lower.tail = TRUE, log.p = FALSE, M = 1000, verbose = TRUE)
pnt3150.1 (t, df, ncp, lower.tail = TRUE, log.p = FALSE, M = 1000, verbose = TRUE)
pntP94 (t, df, ncp, lower.tail = TRUE, log.p = FALSE,
itrmax = 1000, errmax = 1e-12, verbose = TRUE)
pntP94.1 (t, df, ncp, lower.tail = TRUE, log.p = FALSE,
itrmax = 1000, errmax = 1e-12, verbose = TRUE)
pntLrg (t, df, ncp, lower.tail = TRUE, log.p = FALSE)
pntJW39 (t, df, ncp, lower.tail = TRUE, log.p = FALSE)
pntJW39.0 (t, df, ncp, lower.tail = TRUE, log.p = FALSE)
pntChShP94 (t, df, ncp, lower.tail = TRUE, log.p = FALSE,
itrmax = 1000, errmax = 1e-12, verbose = TRUE)
pntChShP94.1(t, df, ncp, lower.tail = TRUE, log.p = FALSE,
itrmax = 1000, errmax = 1e-12, verbose = TRUE)
vector of quantiles (called q
in pt(..)
.
degrees of freedom (\(> 0\), maybe non-integer). df
= Inf
is allowed.
non-centrality parameter \(\delta\);
currently except for rt()
, only for abs(ncp) <= 37.62
.
If omitted, use the central t distribution.
logical; if TRUE, probabilities p are given as log(p).
logical; if TRUE (default), probabilities are \(P[X \le x]\), otherwise, \(P[X > x]\).
...
...
...
positive integer specifying the number of terms to use in the series.
a number for pntJKBf1()
and .pntJKBch1()
.
a numeric vector of the same length as the maximum of the lengths of
x, df, ncp
for pntJKBf()
and .pntJKBch()
.
.
:..
.
:..
pnt3150()
, pnt3150.1()
:Simple inefficient but hopefully correct version of pntP94..() This is really a direct implementation of formula (31.50), p.532 of Johnson, Kotz and Balakrishnan (1995)
pntP94()
, pntP94.1()
:New versions of
pntR1()
, pntR()
; using the Posten (1994) algorithm.
pntP94()
is the Vectorize()
d version of
pntP94.1()
.
.
:..
.
:..
Johnson, N.L., Kotz, S. and Balakrishnan, N. (1995) Continuous Univariate Distributions Vol~2, 2nd ed.; Wiley. Chapter 31, Section 5 Distribution Function, p.514 ff
pt
, for R's version of non-central t probabilities.
# NOT RUN {
tt <- seq(0, 10, len = 21)
ncp <- seq(0, 6, len = 31)
dt3R <- outer(tt, ncp, pt, , df = 3)
dt3JKB <- outer(tt, ncp, pntR, df = 3)# currently verbose
stopifnot(all.equal(dt3R, dt3JKB, tolerance = 4e-15))# 64-bit Lnx: 2.78e-16
# }
Run the code above in your browser using DataLab