## Not run:
# ####################################
# # Bivariate example:
# # Censored data is artificially
# # created
# ####################################
#
# data(airquality)
# attach(airquality)
#
# ozone <- Ozone**(1/3)
# radiation <- Solar.R
# y <- na.omit(cbind(radiation,ozone))
#
# # create censored-data
# xxlim <- seq(0,300,50)
# yylim <- seq(1.5,5.5,1)
#
# left <- matrix(0,nrow=nrow(y),ncol=2)
# right <- matrix(0,nrow=nrow(y),ncol=2)
#
# for(i in 1:nrow(y))
# {
# left[i,1] <- NA
# right[i,1] <- NA
# if(y[i,1] < xxlim[1]) right[i,1] <- xxlim[1]
# for(j in 1:length(xxlim))
# {
# if(y[i,1] >= xxlim[j]) left[i,1] <- xxlim[j]
# if(y[i,1] >= xxlim[j]) right[i,1] <- xxlim[j+1]
# }
# left[i,2] <- NA
# right[i,2] <- NA
# if(y[i,2] < yylim[1]) right[i,2] <- yylim[1]
#
# for(j in 1:length(yylim))
# {
# if(y[i,2] >= yylim[j]) left[i,2] <- yylim[j]
# if(y[i,2] >= yylim[j]) right[i,2] <- yylim[j+1]
# }
# }
#
# # Prior information
# s2 <- matrix(c(10000,0,0,1),ncol=2)
# m2 <- c(180,3)
# psiinv2 <- diag(c(1/10000,1),2)
#
# prior <- list(alpha=1,nu1=4,nu2=4,s2=s2,
# m2=m2,psiinv2=psiinv2,tau1=0.01,tau2=0.01)
#
# # Initial state
# state <- NULL
#
# # MCMC parameters
# nburn <- 5000
# nsave <- 5000
# nskip <- 3
# ndisplay <- 1000
# mcmc <- list(nburn=nburn,
# nsave=nsave,
# nskip=nskip,
# ndisplay=ndisplay)
#
# # Fitting the model
# fit1 <- DPMdencens(left=left,right=right,ngrid=100,
# prior=prior,mcmc=mcmc,
# state=state,status=TRUE)
# fit1
# summary(fit1)
#
# # Plot the estimated density
# plot(fit1)
#
# # Extracting the univariate density estimates
# cbind(fit1$grid[,1],fit1$funi[[1]])
# cbind(fit1$grid[,2],fit1$funi[[2]])
#
# # Extracting the bivariate density estimates
# fit1$grid[,1]
# fit1$grid[,2]
# fit1$fbiv[[1]]
#
# # Plot of the estimated density along with the
# # true data points and censoring limits
# contour(fit1$grid[,1],fit1$grid[,2],fit1$fbiv[[1]])
# points(y)
# abline(v=xxlim)
# abline(h=yylim)
# ## End(Not run)
Run the code above in your browser using DataLab