## Not run:
# ####################################
# # A simulated Data Set
# ####################################
# nsubject <- 250
# nitem <- 40
#
# y <- matrix(0,nrow=nsubject,ncol=nitem)
# dimnames(y)<-list(paste("id",seq(1:nsubject)),
# paste("item",seq(1,nitem)))
#
# ind <- rbinom(nsubject,1,0.5)
# theta <- ind*rnorm(nsubject,-1,sqrt(0.25))+
# (1-ind)*rnorm(nsubject,2,sqrt(0.065))
# beta <- c(0,seq(-3,3,length=nitem-1))
#
# true.density <- function(grid)
# {
# 0.5*dnorm(grid,-1,sqrt(0.25))+0.5*dnorm(grid,2,sqrt(0.065))
# }
#
# true.cdf <- function(grid)
# {
# 0.5*pnorm(grid,-1,sqrt(0.25))+0.5*pnorm(grid,2,sqrt(0.065))
# }
#
# for(i in 1:nsubject)
# {
# for(j in 1:nitem)
# {
# eta <- theta[i]-beta[j]
# prob <- exp(eta)/(1+exp(eta))
# y[i,j] <- rbinom(1,1,prob)
# }
# }
#
# # Prior information
#
# beta0 <- rep(0,nitem-1)
# Sbeta0 <- diag(100,nitem-1)
#
# prior <- list(N=50,
# alpha=1,
# taub1=6.01,
# taub2=2.01,
# taus1=6.01,
# taus2=2.01,
# tauk1=6.01,
# m0=0,
# s0=100,
# beta0=beta0,
# Sbeta0=Sbeta0)
#
# # Initial state
# state <- NULL
#
# # MCMC parameters
#
# nburn <- 4000
# nsave <- 4000
# nskip <- 0
# ndisplay <- 100
# mcmc <- list(nburn=nburn,
# nsave=nsave,
# nskip=nskip,
# ndisplay=ndisplay)
#
# # Fit the model
# fit1 <- DPMrasch(y=y,prior=prior,mcmc=mcmc,
# state=state,status=TRUE,grid=seq(-3,4,0.01))
#
# plot(fit1$grid,fit1$dens.m,type="l",lty=1,col="red",
# xlim=c(-3,4),ylim=c(0,0.8))
# lines(fit1$grid,true.density(fit1$grid),
# lty=2,col="blue")
#
# plot(fit1$grid,fit1$cdf.m,type="l",lty=1,col="red")
# lines(fit1$grid,true.cdf(fit1$grid),lty=2,col="blue")
#
# # Summary with HPD and Credibility intervals
# summary(fit1)
# summary(fit1,hpd=FALSE)
#
# # Plot model parameters
# # (to see the plots gradually set ask=TRUE)
# plot(fit1,ask=FALSE)
# plot(fit1,ask=FALSE,nfigr=2,nfigc=2)
#
# # Extract random effects
#
# DPrandom(fit1)
# plot(DPrandom(fit1))
# DPcaterpillar(DPrandom(fit1))## End(Not run)
Run the code above in your browser using DataLab