## Not run:
#
# # Schizophrenia Data
# data(psychiatric)
# attach(psychiatric)
#
# # MCMC parameters
#
# nburn<-5000
# nsave<-10000
# nskip<-10
# ndisplay<-100
# mcmc <- list(nburn=nburn,nsave=nsave,nskip=nskip,ndisplay=ndisplay)
#
# # Initial state
# state <- NULL
#
#
# # Prior information
#
# tinv<-diag(10,1)
# prior<-list(alpha=1,nu0=4.01,tinv=tinv,mub=rep(0,1),Sb=diag(100,1),
# beta0=rep(0,3),Sbeta0=diag(1000,3))
#
#
# # Fitting the model
#
#
# fit1<-DPolmm(fixed=imps79o~sweek+tx+sweek*tx,random=~1|id,
# prior=prior,mcmc=mcmc,state=state,status=TRUE)
# fit1
#
# # Summary with HPD and Credibility intervals
# summary(fit1)
# summary(fit1,hpd=FALSE)
#
# # Plot model parameters
# plot(fit1)
#
# # Plot an specific model parameter
# plot(fit1,ask=FALSE,nfigr=1,nfigc=2,param="sigma-(Intercept)")
# plot(fit1,ask=FALSE,nfigr=1,nfigc=2,param="ncluster")
#
# # Extract random effects
# DPrandom(fit1)
# DPrandom(fit1,centered=TRUE)
#
# # Extract predictive information of random effects
# DPrandom(fit1,predictive=TRUE)
# DPrandom(fit1,centered=TRUE,predictive=TRUE)
#
# plot(DPrandom(fit1,predictive=TRUE))
# plot(DPrandom(fit1,centered=TRUE,predictive=TRUE))
# ## End(Not run)
Run the code above in your browser using DataLab