# NOT RUN {
# Prostate cancer data example
data(nodal)
attach(nodal)
lacid<-log(acid)
# Initial state
state <- NULL
# MCMC parameters
nburn<-20000
nsave<-10000
nskip<-10
ndisplay<-100
mcmc <- list(nburn=nburn,nsave=nsave,
nskip=nskip,ndisplay=ndisplay,
tune1=1.1,tune2=1.1)
# Prior distribution
prior <- list(alpha=1, beta0=c(0,rep(0.75,5)),
Sbeta0=diag(c(100,rep(25,5)),6),M=5)
# Fitting the Finite Polya tree model
fit1 <- FPTbinary(ssln~age+lacid+xray+size+grade,
prior=prior,mcmc=mcmc,
state=state,status=TRUE)
fit1
# Summary with HPD and Credibility intervals
summary(fit1)
summary(fit1,hpd=FALSE)
# Plot model parameters (to see the plots gradually set ask=TRUE)
plot(fit1)
plot(fit1,nfigr=2,nfigc=2)
# Plot an specific model parameter (to see the plots gradually
# set ask=TRUE)
plot(fit1,ask=FALSE,nfigr=1,nfigc=2,param="xray")
plot(fit1,ask=FALSE,param="link",nfigc=1,nfigr=1)
# Table of Pseudo Contour Probabilities
anova(fit1)
# Fitting parametric models
nburn<-20000
nsave<-10000
nskip<-10
ndisplay<-100
mcmc <- list(nburn=nburn,nsave=nsave,
nskip=nskip,ndisplay=ndisplay,
tune=1.1)
fit2 <- Pbinary(ssln~age+lacid+xray+size+grade,link="probit",
prior=prior,mcmc=mcmc,state=state,status=TRUE)
fit3 <- Pbinary(ssln~age+lacid+xray+size+grade,link="logit",
prior=prior,mcmc=mcmc,state=state,status=TRUE)
# Model comparison
DPpsBF(fit1,fit2,fit3)
# }
Run the code above in your browser using DataLab