Learn R Programming

DPpackage (version 1.1-7.4)

Bayesian Nonparametric Modeling in R

Description

Functions to perform inference via simulation from the posterior distributions for Bayesian nonparametric and semiparametric models. Although the name of the package was motivated by the Dirichlet Process prior, the package considers and will consider other priors on functional spaces. So far, DPpackage includes models considering Dirichlet Processes, Dependent Dirichlet Processes, Dependent Poisson- Dirichlet Processes, Hierarchical Dirichlet Processes, Polya Trees, Linear Dependent Tailfree Processes, Mixtures of Triangular distributions, Random Bernstein polynomials priors and Dependent Bernstein Polynomials. The package also includes models considering Penalized B-Splines. Includes semiparametric models for marginal and conditional density estimation, ROC curve analysis, interval censored data, binary regression models, generalized linear mixed models, IRT type models, and generalized additive models. Also contains functions to compute Pseudo-Bayes factors for model comparison, and to elicitate the precision parameter of the Dirichlet Process. To maximize computational efficiency, the actual sampling for each model is done in compiled FORTRAN. The functions return objects which can be subsequently analyzed with functions provided in the 'coda' package.

Copy Link

Version

Install

install.packages('DPpackage')

Monthly Downloads

163

Version

1.1-7.4

License

GPL (>= 2)

Maintainer

Alejandro Jara

Last Published

January 6th, 2018

Functions in DPpackage (1.1-7.4)

DPMdencens

Bayesian density estimation for interval-censored data using a DPM of normals
DPMglmm

Bayesian analysis for a semiparametric generalized linear mixed model using a DPM of normals
DPrandom

Extracts Random Effects
DPrasch

Bayesian analysis for a semiparametric Rasch model
LDBDPdensity

Bounded Density Regression using Dependent Bernstein Polynomials
LDDPdensity

Bayesian analysis for a Linear Dependent Dirichlet Process Mixture Model
PTdensity

Nonparametric Bayesian density estimation using Mixtures of Polya Trees
PTglmm

Bayesian analysis for a semiparametric generalized linear mixed model using a MMPT
predict.HDPMcdensity

Predictive Information for the Dependent Random Probability Measures.
predict.HDPMdensity

Predictive Information for the Dependent Random Probability Measures.
uniond

Union Membership
DPMlmm

Bayesian analysis for a semiparametric linear mixed model using a DPM of normals
DPMmeta

Bayesian analysis for a semiparametric linear mixed effects meta-analysis model using a DPM of normals
HDPMcdensity

Bayesian analysis for a hierarchical Dirichlet Process mixture of normals model for conditional density estimation
HDPMdensity

Bayesian analysis for a hierarchical Dirichlet Process mixture of normals model for marginal density estimation
LDTFPdensity

Density Regression using Linear Dependent Tailfree Processes
LDTFPglmm

Generalized linear mixed model using a linear dependent tailfree prior
calgb

Cancer and Leukemia Group B (CALGB) Data
calgb.pred

Cancer and Leukemia Group B (CALGB) Data for Prediction
hiv

HIV-AIDS data
igg

Immunoglobulin G concentrations
schoolgirls

The Heights of Schoolgirls
seizures

Epileptic seizures
DPmeta

Bayesian analysis for a semiparametric linear mixed effects meta-analysis model using a MDP
DPmultmeta

Bayesian analysis for a semiparametric random effects multivariate meta-analysis model using a MDP
LDDPrasch

Bayesian analysis for a dependent semiparametric Rasch model
LDDPraschpoisson

Bayesian analysis for a dependent semiparametric Rasch Poisson model
DPcaterpillar

Caterpillar Plots for Random Effects
DPcdensity

Bayesian Semiparametric Conditional Density Estimation using a DPM of normals
FPTrasch

Bayesian analysis for a Finite Polya Tree Rasch model
FPTraschpoisson

Bayesian analysis for a Finite Polya Tree Rasch Poisson model
LDDProc

Linear dependent DP model for conditional ROC curve estimation.
DPMolmm

Bayesian analysis for a semiparametric ordinal linear mixed model using a DPM of normals
DPMrandom

Extracts Random Effects
LDDPsurvival

Bayesian analysis for a Linear Dependent Dirichlet Process Mixture of Survival Models
LDTFPsurvival

Survival Regression using Linear Dependent Tailfree Processes
PSgam

Bayesian analysis for a semiparametric generalized additive model
DPglmm

Bayesian analysis for a semiparametric generalized linear mixed model using a MDP
DPlmm

Bayesian analysis for a semiparametric linear mixed model using a MDP
deterioration

Time to Cosmetic Deterioration of Breast Cancer Patients
fleabeetles

Flea-beetles
fractionation

British Institute of Radiology Fractionation Studies
galaxy

Galaxy velocities
sports

The Australian Athletes Data
PTolmm

Bayesian analysis for a semiparametric ordinal linear mixed model using a MMPT
PTrandom

Extracts Random Effects
PTsampler

Polya Tree sampler function
indon

Indonesian Children's Health Study
toenail

Toenail data
nodal

Nodal Involvement Data
rats

Rats
rolling

Rolling Thumbtacks Data
PTmeta

Bayesian analysis for a semiparametric linear mixed effects meta-analysis model using a MPT
DPbetabinom

Bayesian Semiparametric Beta-Binomial Model using a DP prior
DPbinary

Bayesian analysis for a semiparametric Bernoulli regression model
DPolmm

Bayesian analysis for a semiparametric ordinal linear mixed model using a MDP
DPpsBF

Computes Pseudo Bayes Factors from DPpackage output
TDPdensity

Semiparametric Bayesian density estimation using DP Mixtures of Triangular Distributions
bir

British Institute of Radiology Fractionation Studies
DPMrasch

Bayesian analysis for a semiparametric Rasch model
DPMraschpoisson

Bayesian analysis for a semiparametric Rasch Poisson model
DPraschpoisson

Bayesian analysis for a semiparametric Rasch Poisson model
DProc

Semiparametric Bayesian ROC curve analysis using DPM of normals
PTlm

Bayesian analysis for a semiparametric linear regression model
PTlmm

Bayesian analysis for a semiparametric linear mixed model using a MMPT
DPdensity

Semiparametric Bayesian density estimation using a DPM of normals
DPelicit

Performs a prior elicitation for the precision parameter of a DP prior
ps

Specify a smoothing spline fit in a PSgam formula
psychiatric

Psychiatric Clinical Trial
LDDPtwopl

Bayesian analysis for a dependent semiparametric two parameters logistic model
LDPDdoublyint

Bayesian analysis for a Linear Dependent Poisson Dirichlet Process Mixture Models for the Analysis of Doubly-Interval-Censored Data
BDPdensity

Semiparametric Bayesian density estimation using Bernstein Polynomials
CSDPbinary

Bayesian analysis for a semiparametric logistic regression model
Pbinary

Bayesian analysis for a parametric Bernoulli regression model
Plm

Bayesian analysis for a parametric linear regression model
orings

Challenger Space Shuttle O-Ring Data
predict.DPsurvint

Computes the Survival Curve in a Bayesian analysis for a semiparametric AFT regression model
DPsurvint

Bayesian analysis for a semiparametric AFT regression model
FPTbinary

Bayesian analysis for a Finite Polya Tree Bernoulli regression model