# NOT RUN {
#############################################################
# Time to Cosmetic Deterioration of Breast Cancer Patients
#############################################################
data(deterioration)
attach(deterioration)
ymat <- cbind(left,right)
# design matrix for posterior predictive
zpred <- rbind(c(1,0),c(1,1))
# Prior information
S0 <- diag(100,2)
m0 <- rep(0,2)
psiinv <- diag(1,2)
prior <- list(a0=10,
b0=1,
nu=4,
m0=m0,
S0=S0,
psiinv=psiinv,
tau1=6.01,
taus1=6.01,
taus2=2.01)
# Initial state
state <- NULL
# MCMC parameters
nburn <- 5000
nsave <- 5000
nskip <- 3
ndisplay <- 100
mcmc <- list(nburn=nburn,
nsave=nsave,
nskip=nskip,
ndisplay=ndisplay)
# Fit the model
fit1 <- LDDPsurvival(ymat~trt,prior=prior,
mcmc=mcmc,state=state,status=TRUE,
grid=seq(0.01,70,1),zpred=zpred)
# Plot posterior density estimates
# with design vector x0=(1,0)
plot(fit1$grid,fit1$densp.h[1,],type="l",
xlab="time",ylab="density",lty=2,lwd=2)
lines(fit1$grid,fit1$densp.l[1,],lty=2,lwd=2)
lines(fit1$grid,fit1$densp.m[1,],lty=1,lwd=3)
# Plot posterior density estimates
# with design vector x0=(1,1)
plot(fit1$grid,fit1$densp.h[2,],type="l",
xlab="time",ylab="density",lty=2,lwd=2)
lines(fit1$grid,fit1$densp.l[2,],lty=2,lwd=2)
lines(fit1$grid,fit1$densp.m[2,],lty=1,lwd=3)
# Plot posterior survival estimates
# with design vector x0=(1,0)
plot(fit1$grid,fit1$survp.h[1,],type="l",
xlab="time",ylab="survival",lty=2,lwd=2,ylim=c(0,1))
lines(fit1$grid,fit1$survp.l[1,],lty=2,lwd=2)
lines(fit1$grid,fit1$survp.m[1,],lty=1,lwd=3)
# Plot posterior survival estimates
# with design vector x0=(1,1)
plot(fit1$grid,fit1$survp.h[2,],type="l",
xlab="time",ylab="survival",lty=2,lwd=2,ylim=c(0,1))
lines(fit1$grid,fit1$survp.l[2,],lty=2,lwd=2)
lines(fit1$grid,fit1$survp.m[2,],lty=1,lwd=3)
# Plot posterior hazard estimates
# with design vector x0=(1,0)
plot(fit1$grid,fit1$hazp.h[1,],type="l",
xlab="time",ylab="hazard",lty=2,lwd=2)
lines(fit1$grid,fit1$hazp.l[1,],lty=2,lwd=2)
lines(fit1$grid,fit1$hazp.m[1,],lty=1,lwd=3)
# Plot posterior hazard estimates
# with design vector x0=(1,1)
plot(fit1$grid,fit1$hazp.h[2,],type="l",
xlab="time",ylab="survival",lty=2,lwd=2)
lines(fit1$grid,fit1$hazp.l[2,],lty=2,lwd=2)
lines(fit1$grid,fit1$hazp.m[2,],lty=1,lwd=3)
# }
Run the code above in your browser using DataLab