# NOT RUN {
####################################
# A simulated Data Set
# (Mixture of Normals)
####################################
ind<-rbinom(100,1,0.5)
vsim<-ind*rnorm(100,1,0.15)+(1-ind)*rnorm(100,3,0.15)
x1<-rep(c(0,1),50)
x2<-rnorm(100,0,1)
etasim<-x1+-1*x2
y<-etasim+vsim
# Initial state
state <- NULL
# MCMC parameters
nburn<-5000
nsave<-10000
nskip<-20
ndisplay<-100
mcmc <- list(nburn=nburn,nsave=nsave,nskip=nskip,
ndisplay=ndisplay)
# Prior information
prior <- list(alpha=1,beta0=rep(0,3),Sbeta0=diag(1000,3),
tau1=0.01,tau2=0.01,M=6)
# Fit the model
fit1 <- PTlm(formula=y~x1+x2,prior=prior,mcmc=mcmc,state=state,
status=TRUE)
# Summary with HPD and Credibility intervals
summary(fit1)
summary(fit1,hpd=FALSE)
# Plot model parameters (to see the plots gradually set ask=TRUE)
plot(fit1)
plot(fit1,nfigr=2,nfigc=2)
# Table of Pseudo Contour Probabilities
anova(fit1)
############################################
# The Australian Institute of Sport's data
# (Skew data example)
############################################
data(sports)
attach(sports)
# Initial state
state <- NULL
# MCMC parameters
nburn<-5000
nsave<-10000
nskip<-20
ndisplay<-100
mcmc <- list(nburn=nburn,nsave=nsave,nskip=nskip,
ndisplay=ndisplay)
# Prior information
prior <- list(alpha=1,beta0=rep(0,3),Sbeta0=diag(1000,3),
tau1=0.01,tau2=0.01,M=8)
# Fit the model
fit2 <- PTlm(formula=bmi~lbm+gender,prior=prior,mcmc=mcmc,
state=state,status=TRUE)
# Summary with HPD and Credibility intervals
summary(fit2)
summary(fit2,hpd=FALSE)
# Plot model parameters (to see the plots gradually set ask=TRUE)
plot(fit2)
plot(fit2,nfigr=2,nfigc=2)
# Table of Pseudo Contour Probabilities
anova(fit2)
# }
Run the code above in your browser using DataLab