###################################
### Differential splicing analysis
###################################
# If possible, use BPPARAM = BiocParallel::MulticoreParam() with more workers
d <- data_dmDSdata
### Filtering
# Check what is the minimal number of replicates per condition
table(samples(d)$group)
d <- dmFilter(d, min_samps_gene_expr = 7, min_samps_feature_expr = 3,
min_samps_feature_prop = 0)
### Calculate dispersion
d <- dmDispersion(d, BPPARAM = BiocParallel::SerialParam())
### Fit full model proportions
d <- dmFit(d, BPPARAM = BiocParallel::SerialParam())
### Fit null model proportions and test for DS
d <- dmTest(d, BPPARAM = BiocParallel::SerialParam())
### Plot feature proportions for top DS gene
res <- results(d)
res <- res[order(res$pvalue, decreasing = FALSE), ]
gene_id <- res$gene_id[1]
plotFit(d, gene_id = gene_id)
plotFit(d, gene_id = gene_id, plot_type = "lineplot")
plotFit(d, gene_id = gene_id, plot_type = "ribbonplot")
Run the code above in your browser using DataLab