JarqueBeraTest(x, robust = TRUE, method = c("chisq", "mc"), 
               N = 0, na.rm = FALSE)chisq or mc, specifying how the critical 
                 values should be obtained. Default is approximated by the
                 chisq-distribution or empirically via Monte Carlo.MeanAD) to estimate sample kurtosis and skewness. For more details see Gel and Gastwirth (2006).
Users can also choose to perform the classical Jarque-Bera test (see
Jarque, C. and Bera, A (1980)).shapiro.test, 
AndersonDarlingTest, CramerVonMisesTest, LillieTest, PearsonTest, ShapiroFranciaTest
qqnorm, qqline for producing a normal quantile-quantile plotx <- rnorm(100)    # null hypothesis
JarqueBeraTest(x)
x <- runif(100)    # alternative hypothesis
JarqueBeraTest(x, robust=TRUE)Run the code above in your browser using DataLab