# MHChisqTest

0th

Percentile

##### Mantel-Haenszel Chi-Square Test

The Mantel-Haenszel chi-square statistic tests the alternative hypothesis that there is a linear association between the row variable and the column variable. Both variables must lie on an ordinal scale.

Keywords
htest
##### Usage
MHChisqTest(x, srow = 1:nrow(x), scol = 1:ncol(x))
##### Arguments
x
a frequency table or a matrix.

srow
scores for the row variable, defaults to 1:nrow.

scol
scores for the colummn variable, defaults to 1:ncol.

##### Details

The statistic is computed as $Q_{MH} = (n-1) \cdot r^2$, where $r^2$ is the Pearson correlation between the row variable and the column variable. The Mantel-Haenszel chi-square statistic use the scores specified by srow and scol. Under the null hypothesis of no association, $Q_{MH}$ has an asymptotic chi-square distribution with one degree of freedom.

##### Value

A list with class "htest" containing the following components:

##### References

Agresti, A. (2002) Categorical Data Analysis. John Wiley & Sons, pp 86 ff.

chisq.test, for calculating correlation of a table: corr

• MHChisqTest
##### Examples
## A r x c table  Agresti (2002, p. 57) Job Satisfaction
Job <- matrix(c(1,2,1,0, 3,3,6,1, 10,10,14,9, 6,7,12,11), 4, 4,
dimnames = list(income = c("< 15k", "15-25k", "25-40k", "> 40k"),
satisfaction = c("VeryD", "LittleD", "ModerateS", "VeryS"))
)

MHChisqTest(Job, srow=c(7.5,20,32.5,60))

Documentation reproduced from package DescTools, version 0.99.19, License: GPL (>= 2)

### Community examples

Looks like there are no examples yet.