PseudoR2(x, which = NULL)glm, polr or multinom model object to be evaluated.
"McFadden","AldrichNelson", "McFaddenAdj", "Nagelkerke",
"CoxSnell", "Effron", "McKelveyZavoina", "Tjur", "all". Partial matching is supported.AIC, LogLik, LogLikNull and G2 will only be reported with option "all".Nagelkerke's $R^2$ is an adjusted version of the Cox and Snell's $R^2$ that adjusts the scale of the statistic to cover the full range from 0 to 1.
McFadden's $R^2$ is another version, based on the log-likelihood kernels for the intercept-only model and the full estimated model.
Aldrich, J. H. and Nelson, F. D. (1984): Linear Probability, Logit, and probit Models, Sage University Press, Beverly Hills.
Cox D R & Snell E J (1989) The Analysis of Binary Data 2nd ed. London: Chapman and Hall.
Efron, B. (1978). Regression and ANOVA with zero-one data: Measures of residual variation. Journal of the American Statistical Association, 73(361), 113--121.
Hosmer, D. W., & Lemeshow, S. (2000). Applied logistic regression (2nd ed.). Hoboke, NJ: Wiley.
McFadden D (1979). Quantitative methods for analysing travel behavior of individuals: Some recent developments. In D. A. Hensher & P. R. Stopher (Eds.), Behavioural travel modelling (pp. 279-318). London: Croom Helm.
McKelvey, R. D., & Zavoina, W. (1975). A statistical model for the analysis of ordinal level dependent variables. The Journal of Mathematical Sociology, 4(1), 103--120
Nagelkerke, N. J. D. (1991). A note on a general definition of the coefficient of determination. Biometrika, 78(3), 691--692.
Tjur, T. (2009) Coefficients of determination in logistic regression models - a new proposal: The coefficient of discrimination. The American Statistician, 63(4): 366-372
logLik, AIC, BICr.glm <- glm(Survived ~ ., data=Untable(Titanic), family=binomial)
PseudoR2(r.glm)
PseudoR2(r.glm, c("McFadden", "Nagel"))
Run the code above in your browser using DataLab