
Last chance! 50% off unlimited learning
Sale ends in
Density function, distribution function, quantile function and random generation for the reverse (or negative) Weibull distribution with location, scale and shape parameters.
dRevWeibull(x, loc=0, scale=1, shape=1, log = FALSE)
pRevWeibull(q, loc=0, scale=1, shape=1, lower.tail = TRUE)
qRevWeibull(p, loc=0, scale=1, shape=1, lower.tail = TRUE)
rRevWeibull(n, loc=0, scale=1, shape=1)dNegWeibull(x, loc=0, scale=1, shape=1, log = FALSE)
pNegWeibull(q, loc=0, scale=1, shape=1, lower.tail = TRUE)
qNegWeibull(p, loc=0, scale=1, shape=1, lower.tail = TRUE)
rNegWeibull(n, loc=0, scale=1, shape=1)
Vector of quantiles.
Vector of probabilities.
Number of observations.
Location, scale and shape parameters (can be given as vectors).
Logical; if TRUE
, the log density is returned.
Logical; if TRUE
(default), probabilities
are P[X <= x], otherwise, P[X > x]
dRevWeibull
and dNegWeibull
give the density function,
pRevWeibull
and pNegWeibull
give the distribution function,
qRevWeibull
and qNegWeibull
give the quantile function,
rRevWeibull
and rNegWeibull
generate random deviates.
The reverse (or negative) Weibull distribution function with parameters
# NOT RUN {
dRevWeibull(-5:-3, -1, 0.5, 0.8)
pRevWeibull(-5:-3, -1, 0.5, 0.8)
qRevWeibull(seq(0.9, 0.6, -0.1), 2, 0.5, 0.8)
rRevWeibull(6, -1, 0.5, 0.8)
p <- (1:9)/10
pRevWeibull(qRevWeibull(p, -1, 2, 0.8), -1, 2, 0.8)
## [1] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
# }
Run the code above in your browser using DataLab