Normal.VUS(x, y, z, p = 0, q = 0, alpha = 0.05, subdivisions = 50000, lam.minus = 1/3, lam0 = 1/3, lam.plus = 1/3, typeIerror = 0.05, margin=0.05,FisherZ=FALSE,...)
integrate
. Default, subdivisions=50000.
integrate
, e.g., abs.tol,rel.tol,stop.on.error etc.
where the notation $H^{-1}(.)$ denotes the inverse function of H. z is a function of the specificity and sensitivity, i.e., $z=z(x,y)$, which constitutes a ROC surface in the three-dimensinal space (x,y,z). The volume under the ROC surface (VUS) defined by z can be written as, $$V_{00}=\int\int_{D_{00}} \{F_0(G_+^{-1}(y))-F_0(F_-^{-1}(x))\}d_x d_y=\int_{-\infty}^{+\infty} F_-(s)G_+(s)f_0(s)d_s$$ The integration domain is $D_{00}=\{0\le x \le 1,0\le y \le G_+(F_-^{-1}(x))\}$. Partial VUS requires a marker has specificity at least p and sensitivity at least q. The equation of partial VUS will be similar to the above but the integration domain is $D_{pq}=\{p\le x \le 1,q \le y \le G_+(F_-^{-1}(x))\}$.
Details on the sample size calculation in the original scale and in the logit scale (after Fisher's Z transformation) can be found in the reference papers.
VUS
NonParametric.VUS
NonParametric.VUS.var
data(AL)
group <- AL$group
table(group)
##take the negated FACTOR1 marker measurements
factor1 <- -AL$FACTOR1
x <- factor1[group=="D-"]
y <- factor1[group=="D0"]
z <- factor1[group=="D+"]
##Complete VUS
vus <- Normal.VUS(x=x, y=y, z=z)
##complete VUS estimate
vus$VUS
##variance of the complete VUS estimate
vus$variance
##sample size
vus$sampleSize
##partial VUS with p>=0.4 and q>=0.5
partial.vus <- Normal.VUS(x=x, y=y, z=z,p=0.4, q=0.5)
Run the code above in your browser using DataLab