easyMCA

0th

Percentile

Multiple Correspondence Analysis

Performs a basic Multiple Correspondence Analysis (MCA)

Usage
easyMCA(variables)
Arguments
variables
data frame with categorical variables (coded as factors)
Value

An object of class "qualmca", basically a list with the following elements:
values
table with eigenvalues
coefficients
coefficients of factorial axes
components
factor coordinates

References

Lebart L., Piron M., Morineau A. (2006) Statistique Exploratoire Multidimensionnelle. Dunod, Paris.

Saporta G. (2006) Probabilites, analyse des donnees et statistique. Editions Technip, Paris.

See Also

disqual, binarize

Aliases
  • easyMCA
Examples
## Not run: 
#   # load insurance wines dataset
#   data(insurance)
# 
#   # multiple correspondence analysis
#   mca1 = easyMCA(insurance[,-1])
#   mca1
#   ## End(Not run)
Documentation reproduced from package DiscriMiner, version 0.1-29, License: GPL-3

Community examples

Looks like there are no examples yet.