Learn R Programming

Distributacalcul (version 0.2.2)

PGF_negbinom: Probability Generating Function of the Negative Binomial distribution

Description

Probability Generating Function (PGF) of the Negative Binomial distribution with parameters \(r\) (number of successful trials) and \(p\) (probability of success).

Usage

PGF_negbinom(
  t,
  size,
  prob = (1/(1 + beta)),
  beta = ((1 - prob)/prob),
  nb_tries = FALSE
)

Arguments

t

t

size

Number of successful trials.

prob

Probability of success.

beta

Alternative parameterization of the negative binomial distribution where beta = (1 - p) / p.

nb_tries

logical; if FALSE (default) number of trials until the rth success, otherwise, number of failures until the rth success.

Value

Function :

Invalid parameter values will return an error detailing which parameter is problematic.

Details

When \(k\) is the number of failures until the \(r\)th success, with a probability \(p\) of a success, the negative binomial has density: $$\left(\frac{r + k - 1}{k}\right) (p)^{r} (1 - p)^{k}$$ for \(k \in \{0, 1, \dots \}\)

When \(k\) is the number of trials until the \(r\)th success, with a probability \(p\) of a success, the negative binomial has density: $$\left(\frac{k - 1}{r - 1}\right) (p)^{r} (1 - p)^{k - r}$$ for \(k \in \{r, r + 1, r + 2, \dots \}\)

The alternative parameterization of the negative binomial with parameter \(\beta\), and \(k\) being the number of trials, has density: $$\frac{\Gamma(r + k)}{\Gamma(r) k!} \left(\frac{1}{1 + \beta}\right)^{r}% \left(\frac{\beta}{1 + \beta}\right)^{k - r}$$ for \(k \in \{0, 1, \dots \}\)

See Also

Other Negative Binomial Distribution: E_negbinom(), MGF_negbinom(), V_negbinom()

Examples

Run this code
# NOT RUN {
PGF_negbinom(t = 5, size = 3, prob = 0.3)

# }

Run the code above in your browser using DataLab