data(qPCR_run1,qPCR_run2,qPCR_run3)
nrmData(data = qPCR_run1 , r=3, E=c(2, 2, 2, 2),
Eerror=c(0.02, 0.02, 0.02, 0.02), nSpl=5,
nbRef=2, Refposcol=1:2, nCTL=2,
CF=c(1, 1, 1, 1), CalPos=5, trace=TRUE, geo=TRUE, na.rm=TRUE)
nrmData(data = qPCR_run2 , r=3, E=c(2, 2, 2, 2),
Eerror=c(0.02, 0.02, 0.02, 0.02), nSpl=5,
nbRef=2, Refposcol=1:2, nCTL=2,
CF=c(1, 1, 1, 1), CalPos=5, trace=TRUE, geo=TRUE, na.rm=TRUE)
nrmData(data = qPCR_run3 , r=3, E=c(2, 2, 2, 2),
Eerror=c(0.02, 0.02, 0.02, 0.02), nSpl=5,
nbRef=2, Refposcol=1:2, nCTL=2,
CF=c(1, 1, 1, 1), CalPos=5, trace=TRUE, geo=TRUE, na.rm=TRUE)
## Isolate the calibrator NRQ values of the first biological replicate
a <- nrmData(data = qPCR_run1 , r=3, E=c(2, 2, 2, 2),
Eerror=c(0.02, 0.02, 0.02, 0.02), nSpl=5,
nbRef=2, Refposcol=1:2, nCTL=2,
CF=c(1, 1, 1, 1), CalPos=5, trace=TRUE, geo=TRUE, na.rm=TRUE)[[3]]
## Isolate the calibrator NRQ values of the first biological replicate
b <- nrmData(data = qPCR_run2 , r=3, E=c(2, 2, 2, 2),
Eerror=c(0.02, 0.02, 0.02, 0.02), nSpl=5,
nbRef=2, Refposcol=1:2, nCTL=2,
CF=c(1, 1, 1, 1), CalPos=5, trace=TRUE, geo=TRUE, na.rm=TRUE)[[3]]
## Isolate the calibrator NRQ values of the first biological replicate
c <- nrmData(data = qPCR_run3 , r=3, E=c(2, 2, 2, 2),
Eerror=c(0.02, 0.02, 0.02, 0.02), nSpl=5,
nbRef=2, Refposcol=1:2, nCTL=2,
CF=c(1, 1, 1, 1), CalPos=5, trace=TRUE, geo=TRUE, na.rm=TRUE)[[3]]
## Regrouping the calibrator NRQ values of all the biological replicates
d <- rbind(a, b, c)
## Calibration factor calculation
e <- calData(d)
## Attenuation of inter-run variation thanks to the calibration factor for the
## first biological replicate
nrmData(data = qPCR_run1 , r=3, E=c(2, 2, 2, 2),
Eerror=c(0.02, 0.02, 0.02, 0.02), nSpl=5,
nbRef=2, Refposcol=1:2, nCTL=2,
CF=e, CalPos=5, trace=TRUE, geo=TRUE, na.rm=TRUE)
## Attenuation of inter-run variation thanks to the calibration factor for the
## second biological replicate
nrmData(data = qPCR_run2 , r=3, E=c(2, 2, 2, 2),
Eerror=c(0.02, 0.02, 0.02, 0.02), nSpl=5,
nbRef=2, Refposcol=1:2, nCTL=2,
CF=e, CalPos=5, trace=TRUE, geo=TRUE, na.rm=TRUE)
## Attenuation of inter-run variation thanks to the calibration factor for the
## third biological replicate
nrmData(data = qPCR_run3 , r=3, E=c(2, 2, 2, 2),
Eerror=c(0.02, 0.02, 0.02, 0.02), nSpl=5,
nbRef=2, Refposcol=1:2, nCTL=2,
CF=e, CalPos=5, trace=TRUE, geo=TRUE, na.rm=TRUE)
## Isolate the NRQs scaled to control of the first biological replicate
a1 <- nrmData(data = qPCR_run1 , r=3, E=c(2, 2, 2, 2),
Eerror=c(0.02, 0.02, 0.02, 0.02), nSpl=5,
nbRef=2, Refposcol=1:2, nCTL=2,
CF=e, CalPos=5, trace=TRUE, geo=TRUE, na.rm=TRUE)[1]
## Isolate the NRQs scaled to control of the second biological replicate
b1 <- nrmData(data = qPCR_run2 , r=3, E=c(2, 2, 2, 2),
Eerror=c(0.02, 0.02, 0.02, 0.02), nSpl=5,
nbRef=2, Refposcol=1:2, nCTL=2,
CF=e, CalPos=5, trace=TRUE, geo=TRUE, na.rm=TRUE)[1]
## Isolate the NRQs scaled to control of the third biological replicate
c1 <- nrmData(data = qPCR_run3 , r=3, E=c(2, 2, 2, 2),
Eerror=c(0.02, 0.02, 0.02, 0.02), nSpl=5,
nbRef=2, Refposcol=1:2, nCTL=2,
CF=e, CalPos=5, trace=TRUE, geo=TRUE, na.rm=TRUE)[1]
## Data frame transformation
a2 <- as.data.frame(a1)
b2 <- as.data.frame(b1)
c2 <- as.data.frame(c1)
## Aggregation of the three biological replicates
d2 <- rbind(a2, b2, c2)
totData(data=d2, r=3, geo=TRUE, logarithm=TRUE, base=2,
transformation=TRUE, nSpl=5, linear=TRUE,
na.rm=TRUE)
Run the code above in your browser using DataLab