```
# NOT RUN {
data(decathlon)
res.pca <- PCA(decathlon, quanti.sup = 11:12, quali.sup = 13)
plot(res.pca, habillage = 13, cex=0.8)
# }
# NOT RUN {
plot(res.pca, habillage = "cos2")
plot(res.pca, habillage = "100m")
plot(res.pca, habillage = c("Competition","100m"))
# }
# NOT RUN {
## To automatically draw ellipses around the barycentres of the categorical variables
plotellipses(res.pca)
## Selection of some individuals
plot(res.pca,select="contrib 7") # plot the 7 individuals with the highest contribution
plot(res.pca,select="cos2 0.8") # plot the individuals with cos2 greater than 0.8
plot(res.pca,select="cos2 5") # plot the 5 individuals with the highest cos2
plot(res.pca,choix="var",select="cos2 0.6") # plot the variables with cos2 greater than 0.6
plot(res.pca,habillage="100m",
ggoptions=list(low.col.quanti="grey90",high.col.quanti="grey10"),legend=list(x="bottom"))
## You can modify the ggplot graphs as ususal with ggplot2
require(ggplot2)
gr <- plot(res.pca)
gr + theme(panel.grid.major = element_blank(),
plot.title=element_text(size=14, color="blue"),
axis.title = element_text(size=12, color="red"))
## To draw classical R graphs
plot(res.pca, graph.type = "classic")
# }
```

Run the code above in your browser using DataCamp Workspace