Learn R Programming

⚠️There's a newer version (2.1) of this package.Take me there.

GDAtools

Geometric Data Analysis and other descriptive techniques

GDAtools provides functions for Geometric Data Analysis :

  • specific Multiple Correspondence Analysis (speMCA)
  • Class Specific Analysis (csMCA)
  • Multiple Factor Analysis (multiMCA)
  • "standardized" Multiple Correspondence Analysis (stMCA)
  • guides for interpretation (test-values, contributions, etc.)
  • inductive tests
  • analysis of structuring factors (concentration ellipses, interactions, etc.)
  • graphical representations (with and without ggplot2)

Besides, it also provides :

  • several functions for bivariate associations between variables (phi coefficients, Cramer's V, correlation coefficients, eta-squared, etc.),
  • the translation of logit models coefficients into percentages,
  • weighted contingency tables,
  • an underrated association measure for contingency tables ("Percentages of Maximum Deviation from Independence", aka PEM).

Documentation

Please visit https://nicolas-robette.github.io/GDAtools/ for documentation

Installation

Execute the following code within R:

if (!require(devtools)){
    install.packages('devtools')
    library(devtools)
}
install_github("nicolas-robette/GDAtools")

References

Bry X., Robette N., Roueff O., 2016, « A dialogue of the deaf in the statistical theater? Adressing structural effects within a geometric data analysis framework », Quality & Quantity, 50(3), pp 1009–1020 [https://link.springer.com/article/10.1007/s11135-015-0187-z]

Le Roux B. and Rouanet H., 2010, Multiple Correspondence Analysis, SAGE, Series: Quantitative Applications in the Social Sciences, Volume 163, CA:Thousand Oaks.

Le Roux B. and Rouanet H., 2004, Geometric Data Analysis: From Correspondence Analysis to Stuctured Data Analysis, Kluwer Academic Publishers, Dordrecht.

Deauvieau J., 2010, « Comment traduire sous forme de probabilites les resultats d'une modelisation logit ? », Bulletin de Methodologie Sociologique, 105(1), 5-23.

Cibois P., 1993, « Le PEM, pourcentage de l'ecart maximum : un indice de liaison entre modalites d'un tableau de contingence », Bulletin de Methodologie Sociologique, 40, pp 43-63, [http://cibois.pagesperso-orange.fr/bms93.pdf]

Rakotomalala R., « Comprendre la taille d'effet (effect size) », [http://eric.univ-lyon2.fr/~ricco/cours/slides/effect_size.pdf]

Copy Link

Version

Install

install.packages('GDAtools')

Monthly Downloads

598

Version

1.6

License

GPL (>= 2)

Issues

Pull Requests

Stars

Forks

Maintainer

Nicolas Robette

Last Published

March 28th, 2021

Functions in GDAtools (1.6)

burt

Computes a Burt table
assoc.yx

Bivariate association measures between a response and predictor variables.
conc.ellipse

Adds concentration ellipses to a correspondence analysis graph.
assoc.catcont

Measures the association between a categorical variable and a continuous variable
catdesc

Measures the association between a categorical variable and some continuous and/or categorical variables
assoc.twocat

Cross-tabulation and measures of association between two categorical variables
assoc.twocont

Measures the association between two continuous variables
condesc

Measures the association between a continuous variable and some continuous and/or categorical variables
Music

Music (data)
Taste

Taste (data)
ggadd_ellipses

Adds concentration ellipses to a MCA cloud of individuals with ggplot2
dimcontrib

Describes the contributions to axes for MCA and variants of MCA
darma

Describes Associations as in a Regression Model Analysis.
getindexcat

Returns the names of the categories in a data frame
dichotom

Dichotomizes the variables in a data frame
multiMCA

Performs Multiple Factor Analysis
ggcloud_indiv

Plots MCA cloud of individuals with ggplot2
pem

Computes the local and global Percentages of Maximum Deviation from Independence (PEM)
dimeta2

Describes the eta2 of a list of supplementary variables for the axes of MCA and variants of MCA
ggcloud_variables

Plots MCA cloud of variables with ggplot2
dimvtest

Describes the test-values of a list of supplementary variables for the axes of MCA and variants of MCA
ggadd_interaction

Adds the interaction between two categorical supplementary variables to a MCA cloud of variables with ggplot2
ggadd_supvar

Adds a categorical supplementary variable to a MCA cloud of variables with ggplot2
dimdesc.MCA

Describes the dimensions of MCA and variants of MCA
indsup

Computes statistics for supplementary individuals
contrib

Computes contributions for a correspondence analysis
textindsup

Adds supplementary individuals to a MCA graph
plot.multiMCA

Plots Multiple Factor Analysis
wtable

Computes a (possibly weighted) contingency table
homog.test

Computes a homogeneity test for a categorical supplementary variable
csMCA

Performs a 'class specific' MCA
modif.rate

Computes the modified rates of variance of a correspondence analysis
plot.stMCA

Plots 'standardized' MCA results
medoids

Computes the medoids of clusters
textvarsup

Adds a categorical supplementary variable to a MCA graph
speMCA

Performs a 'specific' MCA
plot.csMCA

Plots 'class specific' MCA results
translate.logit

Translates logit regression coefficients into percentages
varsup

Computes statistics for a categorical supplementary variable
phi.table

Computes the phi coefficient for every cells of a contingency table
plot.speMCA

Plots 'specific' MCA results
tabcontrib

Displays the categories contributing most to axes for MCA and variants of MCA
stMCA

Performs a 'standardized' MCA