Plots a Multiple Correspondence Analysis cloud of variables, using ggplots functions.
ggcloud_variables(resmca, axes=c(1,2), points='all', shapes=TRUE,
prop=NULL, textsize=3, shapesize=3, col=NULL, palette=NULL, alpha=1,
segment.alpha=0.5, vlab=TRUE, sep='.', legend='right')
object of class 'MCA'
, 'speMCA'
or 'csMCA'
.
numeric vector of length 2, specifying the components (axes) to plot. Default is c(1,2).
character string. If 'all' all categories are plotted (default); if 'besth' only those who contribute most to horizontal axis are plotted; if 'bestv' only those who contribute most to vertical axis are plotted; if 'best' only those who contribute most to horizontal or vertical axis are plotted.
Logical. Should shapes be plotted for categories (in addition to labels) ? Default is TRUE.
If NULL, the size of the labels (if shapes=FALSE) or the shapes (if shapes=TRUE) is constant. If 'n', the size is proportional the the weights of categories; if 'ctr1', the size is proportional to the contributions of the categories on the first dimension of the plot; if 'ctr2', the size is proportional to the contributions of the categories on the second dimension of the plot; if 'ctr.cloud', the size is proportional to the total contributions of the categories on the whole cloud; if 'cos1', the size is proportional to the cosines of the categories on the first dimension of the plot; if 'cos2', the size is proportional to the cosines of the categories on the second dimension of the plot; if 'cos12', the size is proportional to the total cosines of the categories on the two dimensions of the plot.
Size of the labels of categories if shapes=TRUE, or if shapes=FALSE and prop=NULL. Default is 3.
Size if the shapes of categories if shapes=TRUE and prop=FALSE. Default is 3.
Character. A unique color for the shapes and labels of the categories. Default is NULL, which means a palette will be used instead of a unique color (see palette
argument).
Character string or character vector. Only used if col
is NULL. Colors for the shapes and labels of the categories, differentiated by variable. Can be the name of a palette from the RcolorBrewer
package, "bw" for a black and white palette (uses scale_color_grey()
) or a character vector of colors for a custom palette. If NULL (default), the default palette of ggplot2
is used.
Transparency of the shapes and labels of categories. Default is 1.
Transparency of the line segment beside labels of categories. Default is 0.5.
Logical. Should the variable names be used as a prefix for the labels of the categories. Default is TRUE.
Character string used as a separator if vlab=TRUE.
the position of legends ("none", "left", "right", "bottom", "top", or two-element numeric vector). Default is right.
a ggplot object
Le Roux B. and Rouanet H., Multiple Correspondence Analysis, SAGE, Series: Quantitative Applications in the Social Sciences, Volume 163, CA:Thousand Oaks (2010).
Le Roux B. and Rouanet H., Geometric Data Analysis: From Correspondence Analysis to Stuctured Data Analysis, Kluwer Academic Publishers, Dordrecht (June 2004).
ggcloud_indiv
, ggadd_supvar
, ggadd_ellipses
, ggadd_interaction
# NOT RUN {
## Performs a specific MCA on 'Music' example data set
## ignoring every 'NA' (i.e. 'not available') categories,
## and then draws the cloud of categories.
data(Music)
getindexcat(Music[,1:5])
mca <- speMCA(Music[,1:5],excl=c(3,6,9,12,15))
ggcloud_variables(mca)
ggcloud_variables(mca, points='best', prop='n', palette='Set2')
# }
Run the code above in your browser using DataLab