Learn R Programming

⚠️There's a newer version (2.1) of this package.Take me there.

GDAtools

Geometric Data Analysis and other descriptive techniques

GDAtools provides functions for Geometric Data Analysis :

  • specific Multiple Correspondence Analysis (speMCA)
  • Class Specific Analysis (csMCA)
  • Multiple Factor Analysis (multiMCA)
  • "standardized" Multiple Correspondence Analysis (stMCA)
  • guides for interpretation (test-values, contributions, etc.)
  • inductive tests
  • analysis of structuring factors (concentration ellipses, interactions, etc.)
  • graphical representations (with and without ggplot2)

Besides, it also provides :

  • several functions for bivariate associations between variables (phi coefficients, Cramer's V, correlation coefficients, eta-squared, etc.),
  • plotting functions for bivariate associations between variables,
  • the translation of logit models coefficients into percentages,
  • weighted contingency tables,
  • an underrated association measure for contingency tables ("Percentages of Maximum Deviation from Independence", aka PEM).

Documentation

Please visit https://nicolas-robette.github.io/GDAtools/ for documentation

Installation

Execute the following code within R:

if (!require(devtools)){
    install.packages('devtools')
    library(devtools)
}
install_github("nicolas-robette/GDAtools")

References

Bry X., Robette N., Roueff O., 2016, « A dialogue of the deaf in the statistical theater? Adressing structural effects within a geometric data analysis framework », Quality & Quantity, 50(3), pp 1009–1020 [https://link.springer.com/article/10.1007/s11135-015-0187-z]

Le Roux B. and Rouanet H., 2010, Multiple Correspondence Analysis, SAGE, Series: Quantitative Applications in the Social Sciences, Volume 163, CA:Thousand Oaks.

Le Roux B. and Rouanet H., 2004, Geometric Data Analysis: From Correspondence Analysis to Stuctured Data Analysis, Kluwer Academic Publishers, Dordrecht.

Deauvieau J., 2019, « Comparer les resultats d’un modele logit dichotomique ou polytomique entre plusieurs groupes a partir des probabilites estimees », Bulletin de Methodologie Sociologique, 142(1), 7-31.

Cibois P., 1993, « Le PEM, pourcentage de l'ecart maximum : un indice de liaison entre modalites d'un tableau de contingence », Bulletin de Methodologie Sociologique, 40, pp 43-63, [http://cibois.pagesperso-orange.fr/bms93.pdf]

Rakotomalala R., « Comprendre la taille d'effet (effect size) », [http://eric.univ-lyon2.fr/~ricco/cours/slides/effect_size.pdf]

Copy Link

Version

Install

install.packages('GDAtools')

Monthly Downloads

598

Version

1.7

License

GPL (>= 2)

Issues

Pull Requests

Stars

Forks

Maintainer

Nicolas Robette

Last Published

May 31st, 2021

Functions in GDAtools (1.7)

assoc.yx

Bivariate association measures between a response and predictor variables.
Movies

Movies (data)
catdesc

Measures the association between a categorical variable and some continuous and/or categorical variables
assoc.twocat

Cross-tabulation and measures of association between two categorical variables
Taste

Taste (data)
Music

Music (data)
conc.ellipse

Adds concentration ellipses to a cloud of individuals.
assoc.twocont

Measures the association between two continuous variables
burt

Computes a Burt table
dichotom

Dichotomizes the variables in a data frame
assoc.catcont

Measures the association between a categorical variable and a continuous variable
flip.mca

Flips the coordinates of a MCA
dimcontrib

Describes the contributions to axes for a MCA
dimtypicality

Typicality tests for supplementary variables of a MCA
ggadd_interaction

Adds the interaction between two categorical supplementary variables to a cloud of variables
ggadd_kellipses

Adds k-inertia ellipses to a cloud of individuals
ggadd_supvar

Adds a categorical supplementary variable to a cloud of variables
darma

Describes Associations as in a Regression Model Analysis.
ggadd_supind

Adds supplementary individuals to a cloud of individuals
csMCA

Performs a 'class specific' MCA
dimeta2

Describes the eta2 of supplementary variables for the axes of a MCA
ggadd_density

Adds a density layer to the cloud of individuals for a category of a supplementary variable
ggadd_chulls

Adds convex hulls to a cloud of individuals
dimdescr

Describes the dimensions of a MCA
condesc

Measures the association between a continuous variable and some continuous and/or categorical variables
contrib

Computes contributions for a MCA
ggassoc_boxplot

Boxplots with violins
plot.csMCA

Plots 'class specific' MCA results
phi.table

Computes the phi coefficient for every cells of a contingency table
ggadd_ellipses

Adds confidence ellipses to a cloud of individuals
ggassoc_scatter

Scatter plot with a smoothing line
ggassoc_phiplot

Bar plot of phi measures of association of a crosstabulation
wtable

Computes a (possibly weighted) contingency table
homog.test

Computes a homogeneity test for a categorical supplementary variable
ggadd_corr

Adds a heatmap of under/over-representation of a supplementary variable to a cloud of individuals
multiMCA

Performs Multiple Factor Analysis
indsup

Computes statistics for supplementary individuals
getindexcat

Returns the names of the categories in a data frame
ggadd_attractions

Adds attractions between categories via segments to a cloud of variables
plot.multiMCA

Plots Multiple Factor Analysis
medoids

Computes the medoids of clusters
pem

Computes the local and global Percentages of Maximum Deviation from Independence (PEM)
modif.rate

Computes Benzecri's modified rates of variance of a MCA
ggassoc_crosstab

Plots counts and associations of a crosstabulation
ggcloud_indiv

Plots MCA cloud of individuals with ggplot2
stMCA

Performs a 'standardized' MCA
tabcontrib

Displays the categories contributing most to axes for a MCA
ggcloud_variables

Plots MCA cloud of variables with ggplot2
plot.speMCA

Plots 'specific' MCA results
textindsup

Adds supplementary individuals to a MCA graph
varsup

Computes statistics for a categorical supplementary variable
speMCA

Performs a 'specific' MCA
plot.stMCA

Plots 'standardized' MCA results
translate.logit

Translates logit regression coefficients into percentages
textvarsup

Adds a categorical supplementary variable to a MCA graph